基于增强生物地理学优化的数据聚类

Raju Pal, M. Saraswat
{"title":"基于增强生物地理学优化的数据聚类","authors":"Raju Pal, M. Saraswat","doi":"10.1109/IC3.2017.8284305","DOIUrl":null,"url":null,"abstract":"Data clustering is one of the important tool in data analysis which partitions the dataset into different groups based on similarity and dissimilarity measures. Clustering is still a NP-hard problem for large dataset due to the presence of irrelevant, overlapping, missing and unknown features which leads to converge it into local optima. Therefore, this paper introduces a novel hybrid meta-heuristic data clustering approach which is based on K-means and biogeography-based optimization (BBO). The proposed method uses K-means to initialize the population of BBO. The simulation has been done on eleven dataset. Experimental and statistical results validate that proposed method outperforms the existing methods.","PeriodicalId":147099,"journal":{"name":"2017 Tenth International Conference on Contemporary Computing (IC3)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Data clustering using enhanced biogeography-based optimization\",\"authors\":\"Raju Pal, M. Saraswat\",\"doi\":\"10.1109/IC3.2017.8284305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data clustering is one of the important tool in data analysis which partitions the dataset into different groups based on similarity and dissimilarity measures. Clustering is still a NP-hard problem for large dataset due to the presence of irrelevant, overlapping, missing and unknown features which leads to converge it into local optima. Therefore, this paper introduces a novel hybrid meta-heuristic data clustering approach which is based on K-means and biogeography-based optimization (BBO). The proposed method uses K-means to initialize the population of BBO. The simulation has been done on eleven dataset. Experimental and statistical results validate that proposed method outperforms the existing methods.\",\"PeriodicalId\":147099,\"journal\":{\"name\":\"2017 Tenth International Conference on Contemporary Computing (IC3)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Tenth International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2017.8284305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Tenth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2017.8284305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

数据聚类是数据分析的重要工具之一,它基于相似性和不相似性度量将数据集划分为不同的组。对于大型数据集,聚类仍然是一个np难题,因为存在不相关、重叠、缺失和未知的特征,导致其收敛到局部最优。为此,本文提出了一种基于k均值和基于生物地理的优化(BBO)的混合元启发式数据聚类方法。该方法采用K-means对BBO种群进行初始化。在11个数据集上进行了仿真。实验和统计结果验证了该方法优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data clustering using enhanced biogeography-based optimization
Data clustering is one of the important tool in data analysis which partitions the dataset into different groups based on similarity and dissimilarity measures. Clustering is still a NP-hard problem for large dataset due to the presence of irrelevant, overlapping, missing and unknown features which leads to converge it into local optima. Therefore, this paper introduces a novel hybrid meta-heuristic data clustering approach which is based on K-means and biogeography-based optimization (BBO). The proposed method uses K-means to initialize the population of BBO. The simulation has been done on eleven dataset. Experimental and statistical results validate that proposed method outperforms the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信