{"title":"基于特征分类的高效目标检测与匹配","authors":"F. Dornaika, Fadi Chakik","doi":"10.1109/ICPR.2010.753","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for efficient object detection and matching in images and videos. We propose a stage based on a classification scheme that classifies the extracted features in new images into object features and non-object features. This binary classification scheme has turned out to be an efficient tool that can be used for object detection and matching. By means of this classification not only the matching process becomes more robust and faster but also the robust object registration becomes fast. We provide quantitative evaluations showing the advantages of using the classification stage for object matching and registration. Our approach could lend itself nicely to real-time object tracking and detection.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Efficient Object Detection and Matching Using Feature Classification\",\"authors\":\"F. Dornaika, Fadi Chakik\",\"doi\":\"10.1109/ICPR.2010.753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach for efficient object detection and matching in images and videos. We propose a stage based on a classification scheme that classifies the extracted features in new images into object features and non-object features. This binary classification scheme has turned out to be an efficient tool that can be used for object detection and matching. By means of this classification not only the matching process becomes more robust and faster but also the robust object registration becomes fast. We provide quantitative evaluations showing the advantages of using the classification stage for object matching and registration. Our approach could lend itself nicely to real-time object tracking and detection.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Object Detection and Matching Using Feature Classification
This paper presents a new approach for efficient object detection and matching in images and videos. We propose a stage based on a classification scheme that classifies the extracted features in new images into object features and non-object features. This binary classification scheme has turned out to be an efficient tool that can be used for object detection and matching. By means of this classification not only the matching process becomes more robust and faster but also the robust object registration becomes fast. We provide quantitative evaluations showing the advantages of using the classification stage for object matching and registration. Our approach could lend itself nicely to real-time object tracking and detection.