IRIS诊断的标准化

P. Perner
{"title":"IRIS诊断的标准化","authors":"P. Perner","doi":"10.1109/CYBConf.2015.7175934","DOIUrl":null,"url":null,"abstract":"Molecular image-based techniques are widely used in medicine to detect specific diseases. The analysis of the eye plays an important role in order to detect specific diseases. Eye background analysis is used in order to detect certain forms of diabetes and others diseases. In the alternative medicine plays the diagnosis of the iris an important role. One understands by iris diagnosis (Iridology) the investigation and analysis of the colored part of the eye, the iris, to discover factors which play an important role for the prevention and treatment of illnesses, but al-so for the preservation of an optimum health. Although alternative practitioner describe substantial success with the iris diagnosis. The conventional medicine is not convinced of the diagnosis method. A big drawback of the method is the subjective interpretation of what is seen in the iris image. An automatic system would pave the way for much wider use of the iris diagnosis for the diagnosis of illnesses and for the purpose of individual health protection. With this paper we de-scribe our work towards an automatic iris diagnosis system. We describe the image acquisition and the problems with it. Different ways of image acquisition and image preprocessing are explained. We describe the image analysis method for the detection of the iris. This method is based on our novel case-based object recognition and case mining method. Results for the recognition of the iris are given. We describe how to detect the pupil and not wanted lamp spots. We explain how to recognize orange blue spots in the iris and match them against the topological map of the iris. Finally, we give an outlook for further work.","PeriodicalId":177233,"journal":{"name":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Standardization in IRIS diagnosis\",\"authors\":\"P. Perner\",\"doi\":\"10.1109/CYBConf.2015.7175934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular image-based techniques are widely used in medicine to detect specific diseases. The analysis of the eye plays an important role in order to detect specific diseases. Eye background analysis is used in order to detect certain forms of diabetes and others diseases. In the alternative medicine plays the diagnosis of the iris an important role. One understands by iris diagnosis (Iridology) the investigation and analysis of the colored part of the eye, the iris, to discover factors which play an important role for the prevention and treatment of illnesses, but al-so for the preservation of an optimum health. Although alternative practitioner describe substantial success with the iris diagnosis. The conventional medicine is not convinced of the diagnosis method. A big drawback of the method is the subjective interpretation of what is seen in the iris image. An automatic system would pave the way for much wider use of the iris diagnosis for the diagnosis of illnesses and for the purpose of individual health protection. With this paper we de-scribe our work towards an automatic iris diagnosis system. We describe the image acquisition and the problems with it. Different ways of image acquisition and image preprocessing are explained. We describe the image analysis method for the detection of the iris. This method is based on our novel case-based object recognition and case mining method. Results for the recognition of the iris are given. We describe how to detect the pupil and not wanted lamp spots. We explain how to recognize orange blue spots in the iris and match them against the topological map of the iris. Finally, we give an outlook for further work.\",\"PeriodicalId\":177233,\"journal\":{\"name\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBConf.2015.7175934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBConf.2015.7175934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于分子图像的技术在医学上广泛应用于检测特定疾病。对眼睛的分析对于检测特定疾病起着重要的作用。眼部背景分析用于检测某些形式的糖尿病和其他疾病。在替代医学中虹膜的诊断起着重要的作用。人们通过虹膜诊断(虹膜学)了解对眼睛的有色部分虹膜的调查和分析,以发现对预防和治疗疾病起重要作用的因素,同时也对保持最佳健康状态起重要作用。尽管替代医生描述虹膜诊断的巨大成功。传统医学不相信这种诊断方法。该方法的一大缺点是对虹膜图像的主观解释。自动系统将为虹膜诊断在疾病诊断和个人健康保护方面的更广泛应用铺平道路。本文介绍了虹膜自动诊断系统的研制工作。我们描述了图像采集及其存在的问题。说明了图像采集和图像预处理的不同方法。描述了虹膜检测的图像分析方法。该方法是基于我们新颖的基于案例的目标识别和案例挖掘方法。最后给出了虹膜识别的结果。我们描述了如何检测瞳孔和不想要的灯斑。我们解释了如何识别虹膜中的橙色蓝色点,并将它们与虹膜的拓扑地图相匹配。最后,对今后的工作进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Standardization in IRIS diagnosis
Molecular image-based techniques are widely used in medicine to detect specific diseases. The analysis of the eye plays an important role in order to detect specific diseases. Eye background analysis is used in order to detect certain forms of diabetes and others diseases. In the alternative medicine plays the diagnosis of the iris an important role. One understands by iris diagnosis (Iridology) the investigation and analysis of the colored part of the eye, the iris, to discover factors which play an important role for the prevention and treatment of illnesses, but al-so for the preservation of an optimum health. Although alternative practitioner describe substantial success with the iris diagnosis. The conventional medicine is not convinced of the diagnosis method. A big drawback of the method is the subjective interpretation of what is seen in the iris image. An automatic system would pave the way for much wider use of the iris diagnosis for the diagnosis of illnesses and for the purpose of individual health protection. With this paper we de-scribe our work towards an automatic iris diagnosis system. We describe the image acquisition and the problems with it. Different ways of image acquisition and image preprocessing are explained. We describe the image analysis method for the detection of the iris. This method is based on our novel case-based object recognition and case mining method. Results for the recognition of the iris are given. We describe how to detect the pupil and not wanted lamp spots. We explain how to recognize orange blue spots in the iris and match them against the topological map of the iris. Finally, we give an outlook for further work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信