Borel空间约束马尔可夫决策过程的有限状态逼近

Naci Saldi, S. Yüksel, T. Linder
{"title":"Borel空间约束马尔可夫决策过程的有限状态逼近","authors":"Naci Saldi, S. Yüksel, T. Linder","doi":"10.1109/ALLERTON.2015.7447055","DOIUrl":null,"url":null,"abstract":"We consider the finite-state approximation of a discrete-time constrained Markov decision process with compact state space, under the discounted cost criterion. Using the linear programming formulation of the constrained problem, we prove the convergence of the optimal value function of the finite-state model to the optimal value function of the original model. Under further continuity condition on the transition probability of the original model, we also establish a method to compute approximately optimal policies.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite-state approximations to constrained Markov decision processes with Borel spaces\",\"authors\":\"Naci Saldi, S. Yüksel, T. Linder\",\"doi\":\"10.1109/ALLERTON.2015.7447055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the finite-state approximation of a discrete-time constrained Markov decision process with compact state space, under the discounted cost criterion. Using the linear programming formulation of the constrained problem, we prove the convergence of the optimal value function of the finite-state model to the optimal value function of the original model. Under further continuity condition on the transition probability of the original model, we also establish a method to compute approximately optimal policies.\",\"PeriodicalId\":112948,\"journal\":{\"name\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2015.7447055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑了具有紧态空间的离散时间约束马尔可夫决策过程在折现代价准则下的有限状态逼近。利用约束问题的线性规划公式,证明了有限状态模型的最优值函数收敛于原模型的最优值函数。在原模型转移概率的进一步连续性条件下,我们还建立了近似最优策略的计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-state approximations to constrained Markov decision processes with Borel spaces
We consider the finite-state approximation of a discrete-time constrained Markov decision process with compact state space, under the discounted cost criterion. Using the linear programming formulation of the constrained problem, we prove the convergence of the optimal value function of the finite-state model to the optimal value function of the original model. Under further continuity condition on the transition probability of the original model, we also establish a method to compute approximately optimal policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信