交叉立方体的循环数CQn

Xirong Xu, Soomro Pir Dino, Huifeng Zhang, Huijun Jiang, Cong Liu
{"title":"交叉立方体的循环数CQn","authors":"Xirong Xu, Soomro Pir Dino, Huifeng Zhang, Huijun Jiang, Cong Liu","doi":"10.1109/CIS.2017.00039","DOIUrl":null,"url":null,"abstract":"A subset of vertices of a graph G is called a decycling set of G if its deletion results in an acyclic subgraph. The cardinality of a minimum decycling set is called the decycling number of G. This paper presents an approach to construct an acyclic subgraph of CQ_n and proves that for any integer n ≥ 2, the decycling number of CQ_n is 2^n-1 ⋅(1-c/n-1), c∊[0,1].","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decycling Number of Crossed Cubes CQn\",\"authors\":\"Xirong Xu, Soomro Pir Dino, Huifeng Zhang, Huijun Jiang, Cong Liu\",\"doi\":\"10.1109/CIS.2017.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subset of vertices of a graph G is called a decycling set of G if its deletion results in an acyclic subgraph. The cardinality of a minimum decycling set is called the decycling number of G. This paper presents an approach to construct an acyclic subgraph of CQ_n and proves that for any integer n ≥ 2, the decycling number of CQ_n is 2^n-1 ⋅(1-c/n-1), c∊[0,1].\",\"PeriodicalId\":304958,\"journal\":{\"name\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2017.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如果图G的顶点子集的删除导致无环子图,则称为G的循环集。给出了构造CQ_n的非环子图的一种方法,并证明了对于任意整数n≥2,CQ_n的循环数为2^n-1⋅(1-c/n-1), c[0,1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decycling Number of Crossed Cubes CQn
A subset of vertices of a graph G is called a decycling set of G if its deletion results in an acyclic subgraph. The cardinality of a minimum decycling set is called the decycling number of G. This paper presents an approach to construct an acyclic subgraph of CQ_n and proves that for any integer n ≥ 2, the decycling number of CQ_n is 2^n-1 ⋅(1-c/n-1), c∊[0,1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信