摘要:物联网系统中可解释传感器数据驱动的异常检测

Moaz Tajammal Hussain, Charith Perera
{"title":"摘要:物联网系统中可解释传感器数据驱动的异常检测","authors":"Moaz Tajammal Hussain, Charith Perera","doi":"10.1109/iotdi54339.2022.00021","DOIUrl":null,"url":null,"abstract":"Deep learning or black-box models are widely used for anomaly detection in Internet of Things (IoT) data streams. We propose a technique to explain the output of a deep learning model used to detect anomalies in an IoT based industrial process. The proposed technique employs dual surrogate models to deliver black box model explanation. We have also developed an interactive dashboard to give further insights into the detected anomaly. The dashboard integrates our proposed deep learning explanation technique with historical logs to explain the detected anomaly for personas with different backgrounds.","PeriodicalId":314074,"journal":{"name":"2022 IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poster Abstract: Explainable Sensor Data-Driven Anomaly Detection in Internet of Things Systems\",\"authors\":\"Moaz Tajammal Hussain, Charith Perera\",\"doi\":\"10.1109/iotdi54339.2022.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning or black-box models are widely used for anomaly detection in Internet of Things (IoT) data streams. We propose a technique to explain the output of a deep learning model used to detect anomalies in an IoT based industrial process. The proposed technique employs dual surrogate models to deliver black box model explanation. We have also developed an interactive dashboard to give further insights into the detected anomaly. The dashboard integrates our proposed deep learning explanation technique with historical logs to explain the detected anomaly for personas with different backgrounds.\",\"PeriodicalId\":314074,\"journal\":{\"name\":\"2022 IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iotdi54339.2022.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iotdi54339.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习或黑盒模型广泛用于物联网(IoT)数据流的异常检测。我们提出了一种技术来解释深度学习模型的输出,该模型用于检测基于物联网的工业过程中的异常。该技术采用双代理模型提供黑盒模型解释。我们还开发了一个交互式仪表板,以进一步了解检测到的异常。仪表板将我们提出的深度学习解释技术与历史日志相结合,以解释具有不同背景的角色所检测到的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster Abstract: Explainable Sensor Data-Driven Anomaly Detection in Internet of Things Systems
Deep learning or black-box models are widely used for anomaly detection in Internet of Things (IoT) data streams. We propose a technique to explain the output of a deep learning model used to detect anomalies in an IoT based industrial process. The proposed technique employs dual surrogate models to deliver black box model explanation. We have also developed an interactive dashboard to give further insights into the detected anomaly. The dashboard integrates our proposed deep learning explanation technique with historical logs to explain the detected anomaly for personas with different backgrounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信