Perfectoid环

Noah Riggenbach
{"title":"Perfectoid环","authors":"Noah Riggenbach","doi":"10.2307/j.ctvs32rc9.9","DOIUrl":null,"url":null,"abstract":"In this talk I will discuss my recent computation of the NTC groups of perfectoid rings which have a system of pth power roots of unity and thus the Kgroups of the p-completed affine lineR〈x〉 over these rings relative to the ideal (x). This includes all perfect fields of positive characteristic, for which these groups vanish in non-negative degrees. This class of rings also contains many mixed characteristic rings, and perhaps surprisingly while the even nonnegative groups will still vanish, the odd groups will not.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perfectoid rings\",\"authors\":\"Noah Riggenbach\",\"doi\":\"10.2307/j.ctvs32rc9.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk I will discuss my recent computation of the NTC groups of perfectoid rings which have a system of pth power roots of unity and thus the Kgroups of the p-completed affine lineR〈x〉 over these rings relative to the ideal (x). This includes all perfect fields of positive characteristic, for which these groups vanish in non-negative degrees. This class of rings also contains many mixed characteristic rings, and perhaps surprisingly while the even nonnegative groups will still vanish, the odd groups will not.\",\"PeriodicalId\":270009,\"journal\":{\"name\":\"Berkeley Lectures on p-adic Geometry\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Berkeley Lectures on p-adic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvs32rc9.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这次演讲中,我将讨论我最近对具有单位的p次幂根系统的完美样环的NTC群的计算,从而讨论这些环上相对于理想(x)的p完备仿射线性< x >的k群。这包括所有正特征的完美场,这些群以非负度消失。这类环还包含许多混合特征环,也许令人惊讶的是,虽然偶数非负群仍然会消失,但奇数群不会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perfectoid rings
In this talk I will discuss my recent computation of the NTC groups of perfectoid rings which have a system of pth power roots of unity and thus the Kgroups of the p-completed affine lineR〈x〉 over these rings relative to the ideal (x). This includes all perfect fields of positive characteristic, for which these groups vanish in non-negative degrees. This class of rings also contains many mixed characteristic rings, and perhaps surprisingly while the even nonnegative groups will still vanish, the odd groups will not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信