用于前列腺病变检测评估的多通道3D深度学习架构

Dimitrios I. Zaridis, E. Mylona, N. Tachos, K. Marias, M. Tsiknakis, D. Fotiadis
{"title":"用于前列腺病变检测评估的多通道3D深度学习架构","authors":"Dimitrios I. Zaridis, E. Mylona, N. Tachos, K. Marias, M. Tsiknakis, D. Fotiadis","doi":"10.1109/CAI54212.2023.00071","DOIUrl":null,"url":null,"abstract":"The localization of prostate cancer on MR images is of paramount importance for accurate diagnosis and treatment. In the present study, transformations of 3 Deep Learning segmentation models from 2D to 3D space are proposed to segment prostate lesions in MR images. The 3D Use-Net model is the best model outperforming the second by 10% Dice Score and 1.79mm Hausdorff Distance.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Channel 3D Deep Learning Architectures for Evaluation of Prostate Lesion Detection\",\"authors\":\"Dimitrios I. Zaridis, E. Mylona, N. Tachos, K. Marias, M. Tsiknakis, D. Fotiadis\",\"doi\":\"10.1109/CAI54212.2023.00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The localization of prostate cancer on MR images is of paramount importance for accurate diagnosis and treatment. In the present study, transformations of 3 Deep Learning segmentation models from 2D to 3D space are proposed to segment prostate lesions in MR images. The 3D Use-Net model is the best model outperforming the second by 10% Dice Score and 1.79mm Hausdorff Distance.\",\"PeriodicalId\":129324,\"journal\":{\"name\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAI54212.2023.00071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌在磁共振图像上的定位对于准确诊断和治疗至关重要。在本研究中,提出了3种深度学习分割模型从2D到3D空间的转换,以分割MR图像中的前列腺病变。3D Use-Net模型是最好的模型,比第二种模型高出10%的Dice Score和1.79mm的Hausdorff距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Channel 3D Deep Learning Architectures for Evaluation of Prostate Lesion Detection
The localization of prostate cancer on MR images is of paramount importance for accurate diagnosis and treatment. In the present study, transformations of 3 Deep Learning segmentation models from 2D to 3D space are proposed to segment prostate lesions in MR images. The 3D Use-Net model is the best model outperforming the second by 10% Dice Score and 1.79mm Hausdorff Distance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信