如何对算术电路进行乱码

B. Applebaum, Y. Ishai, E. Kushilevitz
{"title":"如何对算术电路进行乱码","authors":"B. Applebaum, Y. Ishai, E. Kushilevitz","doi":"10.1137/120875193","DOIUrl":null,"url":null,"abstract":"Yao's garbled circuit construction transforms a boolean circuit $C:\\{0,1\\}^n\\to\\{0,1\\}^m$ into a ``garbled circuit'' $\\hat{C}$ along with $n$ pairs of $k$-bit keys, one for each input bit, such that $\\hat{C}$ together with the $n$ keys corresponding to an input $x$ reveal $C(x)$ and no additional information about $x$. The garbled circuit construction is a central tool for constant-round secure computation and has several other applications. Motivated by these applications, we suggest an efficient arithmetic variant of Yao's original construction. Our construction transforms an arithmetic circuit $C : \\Z^n\\to\\Z^m$ over integers from a bounded (but possibly exponential)range into a garbled circuit $\\hat{C}$ along with $n$ affine functions $L_i : \\Z\\to \\Z^k$ such that $\\hat{C}$ together with the $n$ integer vectors $L_i(x_i)$ reveal $C(x)$ and no additional information about $x$. The security of our construction relies on the intractability of the learning with errors (LWE) problem.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"How to Garble Arithmetic Circuits\",\"authors\":\"B. Applebaum, Y. Ishai, E. Kushilevitz\",\"doi\":\"10.1137/120875193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yao's garbled circuit construction transforms a boolean circuit $C:\\\\{0,1\\\\}^n\\\\to\\\\{0,1\\\\}^m$ into a ``garbled circuit'' $\\\\hat{C}$ along with $n$ pairs of $k$-bit keys, one for each input bit, such that $\\\\hat{C}$ together with the $n$ keys corresponding to an input $x$ reveal $C(x)$ and no additional information about $x$. The garbled circuit construction is a central tool for constant-round secure computation and has several other applications. Motivated by these applications, we suggest an efficient arithmetic variant of Yao's original construction. Our construction transforms an arithmetic circuit $C : \\\\Z^n\\\\to\\\\Z^m$ over integers from a bounded (but possibly exponential)range into a garbled circuit $\\\\hat{C}$ along with $n$ affine functions $L_i : \\\\Z\\\\to \\\\Z^k$ such that $\\\\hat{C}$ together with the $n$ integer vectors $L_i(x_i)$ reveal $C(x)$ and no additional information about $x$. The security of our construction relies on the intractability of the learning with errors (LWE) problem.\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/120875193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/120875193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

摘要

Yao的乱码电路结构将布尔电路$C:\{0,1\}^n\到\{0,1\}^m$转换成一个“乱码电路”$\hat{C}$以及$n对$k$位密钥,每个输入位一个,这样$\hat{C}$连同$n$密钥对应输入$x$显示$C(x)$,并且没有关于$x$的额外信息。乱码电路结构是常轮安全计算的核心工具,还有其他一些应用。在这些应用的激励下,我们提出了姚的原始结构的一种有效的算法变体。我们的构造将算术电路$C: \Z^n $到\Z^m$在整数上从有界(但可能是指数)范围转换成一个乱码电路$\hat{C}$连同$n$仿射函数$L_i: \Z\到$ Z^k$,使得$\hat{C}$连同$n$整数向量$L_i(x_i)$显示$C(x)$,并且没有关于$x$的额外信息。该结构的安全性取决于带误差学习(LWE)问题的难解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Garble Arithmetic Circuits
Yao's garbled circuit construction transforms a boolean circuit $C:\{0,1\}^n\to\{0,1\}^m$ into a ``garbled circuit'' $\hat{C}$ along with $n$ pairs of $k$-bit keys, one for each input bit, such that $\hat{C}$ together with the $n$ keys corresponding to an input $x$ reveal $C(x)$ and no additional information about $x$. The garbled circuit construction is a central tool for constant-round secure computation and has several other applications. Motivated by these applications, we suggest an efficient arithmetic variant of Yao's original construction. Our construction transforms an arithmetic circuit $C : \Z^n\to\Z^m$ over integers from a bounded (but possibly exponential)range into a garbled circuit $\hat{C}$ along with $n$ affine functions $L_i : \Z\to \Z^k$ such that $\hat{C}$ together with the $n$ integer vectors $L_i(x_i)$ reveal $C(x)$ and no additional information about $x$. The security of our construction relies on the intractability of the learning with errors (LWE) problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信