用于简化布尔表达式的自适应映射

M. H. Al-Jammas
{"title":"用于简化布尔表达式的自适应映射","authors":"M. H. Al-Jammas","doi":"10.5121/IJCSES.2013.4601","DOIUrl":null,"url":null,"abstract":"Th e complexity of implementing the Boolean functions by digital logic gates is directly related to the complexity of the Boolean algebraic expression. Although the truth table is used to represent a function, when it is expressed algebraically it appeared in many different, but equivalent, forms. Boolean expressions may be simplified by Boolean algebra. However, this procedure of minimization is awkward because it lacks specific rules to predict each succeeding step in the manipulative process. Other methods like Map methods (Karnaugh map (K-map), and map Entered Variables) are useful to implement the Boolean expression with minimal prime implicants. Or the Boolean function can be represents and design by used type N’s Multiplexers by partitioned variable(s) from the function. An adaptive map is a combined method of Boolean algebra and K-map to reduce and minimize Boolean functions involving more than three Boolean variables.","PeriodicalId":415526,"journal":{"name":"International Journal of Computer Science & Engineering Survey","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ADAPTIVE MAP FOR SIMPLIFYING BOOLEAN EXPRESSIONS\",\"authors\":\"M. H. Al-Jammas\",\"doi\":\"10.5121/IJCSES.2013.4601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Th e complexity of implementing the Boolean functions by digital logic gates is directly related to the complexity of the Boolean algebraic expression. Although the truth table is used to represent a function, when it is expressed algebraically it appeared in many different, but equivalent, forms. Boolean expressions may be simplified by Boolean algebra. However, this procedure of minimization is awkward because it lacks specific rules to predict each succeeding step in the manipulative process. Other methods like Map methods (Karnaugh map (K-map), and map Entered Variables) are useful to implement the Boolean expression with minimal prime implicants. Or the Boolean function can be represents and design by used type N’s Multiplexers by partitioned variable(s) from the function. An adaptive map is a combined method of Boolean algebra and K-map to reduce and minimize Boolean functions involving more than three Boolean variables.\",\"PeriodicalId\":415526,\"journal\":{\"name\":\"International Journal of Computer Science & Engineering Survey\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Science & Engineering Survey\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJCSES.2013.4601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science & Engineering Survey","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJCSES.2013.4601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用数字逻辑门实现布尔函数的复杂度直接关系到布尔代数表达式的复杂度。虽然真值表是用来表示一个函数的,但当它用代数表示时,它会以许多不同但等价的形式出现。布尔表达式可以用布尔代数来简化。然而,这种最小化过程是尴尬的,因为它缺乏具体的规则来预测操作过程中的每个后续步骤。其他方法,如Map方法(Karnaugh Map (K-map)和Map Entered Variables)对于实现具有最小素数隐含的布尔表达式很有用。或者布尔函数可以通过从函数中划分变量的N型复用器来表示和设计。自适应映射是一种布尔代数与k -映射相结合的方法,用于对涉及三个以上布尔变量的布尔函数进行约简和最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ADAPTIVE MAP FOR SIMPLIFYING BOOLEAN EXPRESSIONS
Th e complexity of implementing the Boolean functions by digital logic gates is directly related to the complexity of the Boolean algebraic expression. Although the truth table is used to represent a function, when it is expressed algebraically it appeared in many different, but equivalent, forms. Boolean expressions may be simplified by Boolean algebra. However, this procedure of minimization is awkward because it lacks specific rules to predict each succeeding step in the manipulative process. Other methods like Map methods (Karnaugh map (K-map), and map Entered Variables) are useful to implement the Boolean expression with minimal prime implicants. Or the Boolean function can be represents and design by used type N’s Multiplexers by partitioned variable(s) from the function. An adaptive map is a combined method of Boolean algebra and K-map to reduce and minimize Boolean functions involving more than three Boolean variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信