用磁面积分方程法分析双脊或四脊波导

WaiChing Sun, C. Balanis
{"title":"用磁面积分方程法分析双脊或四脊波导","authors":"WaiChing Sun, C. Balanis","doi":"10.1109/APS.1993.385373","DOIUrl":null,"url":null,"abstract":"The authors present a unified approach to the analysis of ridged waveguides by a magnetic field integral equation (MFIE) formulation. The MFIE approach allows an accurate and complete solution via a simple numerical implementation of pulse basis functions. The emphasis in the present work is on the design of ridged waveguides for applications in microwave components and systems, rather than on details of numerical algorithms. The proposed theory is verified by comparison with exact closed-form solutions and other published results.<<ETX>>","PeriodicalId":138141,"journal":{"name":"Proceedings of IEEE Antennas and Propagation Society International Symposium","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Analysis of double- or quadruple-ridged waveguides by a magnetic surface integral equation approach\",\"authors\":\"WaiChing Sun, C. Balanis\",\"doi\":\"10.1109/APS.1993.385373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present a unified approach to the analysis of ridged waveguides by a magnetic field integral equation (MFIE) formulation. The MFIE approach allows an accurate and complete solution via a simple numerical implementation of pulse basis functions. The emphasis in the present work is on the design of ridged waveguides for applications in microwave components and systems, rather than on details of numerical algorithms. The proposed theory is verified by comparison with exact closed-form solutions and other published results.<<ETX>>\",\"PeriodicalId\":138141,\"journal\":{\"name\":\"Proceedings of IEEE Antennas and Propagation Society International Symposium\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Antennas and Propagation Society International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.1993.385373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.1993.385373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种用磁场积分方程(MFIE)公式对脊波导进行分析的统一方法。MFIE方法允许通过脉冲基函数的简单数值实现精确和完整的解决方案。在本工作的重点是脊波导的设计应用于微波元件和系统,而不是数值算法的细节。通过与精确闭型解和其他已发表的结果的比较,验证了所提出的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of double- or quadruple-ridged waveguides by a magnetic surface integral equation approach
The authors present a unified approach to the analysis of ridged waveguides by a magnetic field integral equation (MFIE) formulation. The MFIE approach allows an accurate and complete solution via a simple numerical implementation of pulse basis functions. The emphasis in the present work is on the design of ridged waveguides for applications in microwave components and systems, rather than on details of numerical algorithms. The proposed theory is verified by comparison with exact closed-form solutions and other published results.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信