应用程序知道最好的:性能驱动的内存过度使用银杏

M. R. Hines, Abel Gordon, Márcio Silva, D. D. Silva, K. D. Ryu, Muli Ben-Yehuda
{"title":"应用程序知道最好的:性能驱动的内存过度使用银杏","authors":"M. R. Hines, Abel Gordon, Márcio Silva, D. D. Silva, K. D. Ryu, Muli Ben-Yehuda","doi":"10.1109/CloudCom.2011.27","DOIUrl":null,"url":null,"abstract":"Memory over commitment enables cloud providers to host more virtual machines on a single physical server, exploiting spare CPU and I/O capacity when physical memory becomes the bottleneck for virtual machine deployment. However, over commiting memory can also cause noticeable application performance degradation. We present Ginkgo, a policy framework for over omitting memory in an informed and automated fashion. By directly correlating application-level performance to memory, Ginkgo automates the redistribution of scarce memory across all virtual machines, satisfying performance and capacity constraints. Ginkgo also achieves memory gains for traditionally fixed-size Java applications by coordinating the redistribution of available memory with the activities of the Java Virtual Machine heap. When compared to a non-over commited system, Ginkgo runs the Day Trader 2.0 and SPEC Web 2009 benchmarks with the same number of virtual machines while saving up to 73% (50% omitting free space) of a physical server's memory while keeping application performance degradation within 7%.","PeriodicalId":427190,"journal":{"name":"2011 IEEE Third International Conference on Cloud Computing Technology and Science","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Applications Know Best: Performance-Driven Memory Overcommit with Ginkgo\",\"authors\":\"M. R. Hines, Abel Gordon, Márcio Silva, D. D. Silva, K. D. Ryu, Muli Ben-Yehuda\",\"doi\":\"10.1109/CloudCom.2011.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memory over commitment enables cloud providers to host more virtual machines on a single physical server, exploiting spare CPU and I/O capacity when physical memory becomes the bottleneck for virtual machine deployment. However, over commiting memory can also cause noticeable application performance degradation. We present Ginkgo, a policy framework for over omitting memory in an informed and automated fashion. By directly correlating application-level performance to memory, Ginkgo automates the redistribution of scarce memory across all virtual machines, satisfying performance and capacity constraints. Ginkgo also achieves memory gains for traditionally fixed-size Java applications by coordinating the redistribution of available memory with the activities of the Java Virtual Machine heap. When compared to a non-over commited system, Ginkgo runs the Day Trader 2.0 and SPEC Web 2009 benchmarks with the same number of virtual machines while saving up to 73% (50% omitting free space) of a physical server's memory while keeping application performance degradation within 7%.\",\"PeriodicalId\":427190,\"journal\":{\"name\":\"2011 IEEE Third International Conference on Cloud Computing Technology and Science\",\"volume\":\"2017 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Third International Conference on Cloud Computing Technology and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudCom.2011.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Third International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2011.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

内存超过承诺使云提供商能够在单个物理服务器上托管更多虚拟机,当物理内存成为虚拟机部署的瓶颈时,可以利用空闲的CPU和I/O容量。但是,过度使用内存也会导致明显的应用程序性能下降。我们提出银杏,在一个知情和自动化的方式过度省略记忆的政策框架。通过直接将应用程序级性能与内存相关联,Ginkgo在所有虚拟机之间自动重新分配稀缺内存,从而满足性能和容量限制。Ginkgo还通过与Java虚拟机堆的活动协调可用内存的重新分配,为传统的固定大小的Java应用程序实现内存增益。与非过度承诺的系统相比,Ginkgo在运行Day Trader 2.0和SPEC Web 2009基准测试时使用相同数量的虚拟机,同时节省了物理服务器内存的73%(50%省略了可用空间),同时将应用程序性能降低在7%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications Know Best: Performance-Driven Memory Overcommit with Ginkgo
Memory over commitment enables cloud providers to host more virtual machines on a single physical server, exploiting spare CPU and I/O capacity when physical memory becomes the bottleneck for virtual machine deployment. However, over commiting memory can also cause noticeable application performance degradation. We present Ginkgo, a policy framework for over omitting memory in an informed and automated fashion. By directly correlating application-level performance to memory, Ginkgo automates the redistribution of scarce memory across all virtual machines, satisfying performance and capacity constraints. Ginkgo also achieves memory gains for traditionally fixed-size Java applications by coordinating the redistribution of available memory with the activities of the Java Virtual Machine heap. When compared to a non-over commited system, Ginkgo runs the Day Trader 2.0 and SPEC Web 2009 benchmarks with the same number of virtual machines while saving up to 73% (50% omitting free space) of a physical server's memory while keeping application performance degradation within 7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信