社会互动的多模态移动感知

A. Matic, V. Osmani, Alban Maxhuni, O. Mayora-Ibarra
{"title":"社会互动的多模态移动感知","authors":"A. Matic, V. Osmani, Alban Maxhuni, O. Mayora-Ibarra","doi":"10.4108/ICST.PERVASIVEHEALTH.2012.248689","DOIUrl":null,"url":null,"abstract":"The level of participation in social interactions has been shown to have an impact on various health outcomes, while it also reflects the overall wellbeing status. In health sciences the standard practice for measuring the amount of social activity relies on periodical self-reports that suffer from memory dependence, recall bias and the current mood. In this regard, the use of sensor-based detection of social interactions has the potential to overcome the limitations of self-reporting methods that have been used for decades in health related sciences. However, the current systems have mainly relied on external infrastructures, which are confined within specific location or on specialized devices typically not-available off the shelf. On the other hand, mobile phone based solutions are often limited in accuracy or in capturing social interactions that occur on small time and spatial scales. The work presented in this paper relies on widely available mobile sensing technologies, namely smart phones utilized for recognizing spatial settings between subjects and the accelerometer used for speech activity identification. We evaluate the two sensing modalities both separately and in fusion, demonstrating high accuracy in detecting social interactions on small spatio-temporal scale.","PeriodicalId":119950,"journal":{"name":"2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Multi-modal mobile sensing of social interactions\",\"authors\":\"A. Matic, V. Osmani, Alban Maxhuni, O. Mayora-Ibarra\",\"doi\":\"10.4108/ICST.PERVASIVEHEALTH.2012.248689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The level of participation in social interactions has been shown to have an impact on various health outcomes, while it also reflects the overall wellbeing status. In health sciences the standard practice for measuring the amount of social activity relies on periodical self-reports that suffer from memory dependence, recall bias and the current mood. In this regard, the use of sensor-based detection of social interactions has the potential to overcome the limitations of self-reporting methods that have been used for decades in health related sciences. However, the current systems have mainly relied on external infrastructures, which are confined within specific location or on specialized devices typically not-available off the shelf. On the other hand, mobile phone based solutions are often limited in accuracy or in capturing social interactions that occur on small time and spatial scales. The work presented in this paper relies on widely available mobile sensing technologies, namely smart phones utilized for recognizing spatial settings between subjects and the accelerometer used for speech activity identification. We evaluate the two sensing modalities both separately and in fusion, demonstrating high accuracy in detecting social interactions on small spatio-temporal scale.\",\"PeriodicalId\":119950,\"journal\":{\"name\":\"2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ICST.PERVASIVEHEALTH.2012.248689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.PERVASIVEHEALTH.2012.248689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

社会互动的参与程度已被证明对各种健康结果有影响,同时它也反映了整体的健康状况。在健康科学中,衡量社会活动量的标准做法依赖于定期的自我报告,这些报告受到记忆依赖、回忆偏差和当前情绪的影响。在这方面,使用基于传感器的社会互动检测有可能克服自我报告方法的局限性,这种方法已在健康相关科学中使用了数十年。然而,目前的系统主要依赖于外部基础设施,这些基础设施被限制在特定的位置或专用设备上,通常无法从货架上获得。另一方面,基于移动电话的解决方案往往在准确性或捕捉小时间和空间尺度上发生的社会互动方面受到限制。本文中提出的工作依赖于广泛可用的移动传感技术,即用于识别受试者之间空间设置的智能手机和用于语音活动识别的加速度计。我们分别评估了这两种感知模式和融合模式,证明了在小时空尺度上检测社会互动的高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-modal mobile sensing of social interactions
The level of participation in social interactions has been shown to have an impact on various health outcomes, while it also reflects the overall wellbeing status. In health sciences the standard practice for measuring the amount of social activity relies on periodical self-reports that suffer from memory dependence, recall bias and the current mood. In this regard, the use of sensor-based detection of social interactions has the potential to overcome the limitations of self-reporting methods that have been used for decades in health related sciences. However, the current systems have mainly relied on external infrastructures, which are confined within specific location or on specialized devices typically not-available off the shelf. On the other hand, mobile phone based solutions are often limited in accuracy or in capturing social interactions that occur on small time and spatial scales. The work presented in this paper relies on widely available mobile sensing technologies, namely smart phones utilized for recognizing spatial settings between subjects and the accelerometer used for speech activity identification. We evaluate the two sensing modalities both separately and in fusion, demonstrating high accuracy in detecting social interactions on small spatio-temporal scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信