{"title":"平滑度","authors":"","doi":"10.7551/mitpress/12199.003.0014","DOIUrl":null,"url":null,"abstract":". For a class of particle systems in continuous space with local interactions, we show that the asymptotic diffusion matrix is an infinitely differentiable function of the density of particles. Our method allows us to identify relatively explicit descriptions of the derivatives of the diffusion matrix in terms of the corrector. MSC 2010: 82C22, 35B27, 60K35.","PeriodicalId":432029,"journal":{"name":"Material and Mind","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Smoothness\",\"authors\":\"\",\"doi\":\"10.7551/mitpress/12199.003.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". For a class of particle systems in continuous space with local interactions, we show that the asymptotic diffusion matrix is an infinitely differentiable function of the density of particles. Our method allows us to identify relatively explicit descriptions of the derivatives of the diffusion matrix in terms of the corrector. MSC 2010: 82C22, 35B27, 60K35.\",\"PeriodicalId\":432029,\"journal\":{\"name\":\"Material and Mind\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material and Mind\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7551/mitpress/12199.003.0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material and Mind","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7551/mitpress/12199.003.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
. For a class of particle systems in continuous space with local interactions, we show that the asymptotic diffusion matrix is an infinitely differentiable function of the density of particles. Our method allows us to identify relatively explicit descriptions of the derivatives of the diffusion matrix in terms of the corrector. MSC 2010: 82C22, 35B27, 60K35.