平滑度

{"title":"平滑度","authors":"","doi":"10.7551/mitpress/12199.003.0014","DOIUrl":null,"url":null,"abstract":". For a class of particle systems in continuous space with local interactions, we show that the asymptotic diffusion matrix is an infinitely differentiable function of the density of particles. Our method allows us to identify relatively explicit descriptions of the derivatives of the diffusion matrix in terms of the corrector. MSC 2010: 82C22, 35B27, 60K35.","PeriodicalId":432029,"journal":{"name":"Material and Mind","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Smoothness\",\"authors\":\"\",\"doi\":\"10.7551/mitpress/12199.003.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". For a class of particle systems in continuous space with local interactions, we show that the asymptotic diffusion matrix is an infinitely differentiable function of the density of particles. Our method allows us to identify relatively explicit descriptions of the derivatives of the diffusion matrix in terms of the corrector. MSC 2010: 82C22, 35B27, 60K35.\",\"PeriodicalId\":432029,\"journal\":{\"name\":\"Material and Mind\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material and Mind\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7551/mitpress/12199.003.0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material and Mind","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7551/mitpress/12199.003.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

。对于具有局部相互作用的连续空间中的一类粒子系统,我们证明了其渐近扩散矩阵是粒子密度的无穷可微函数。我们的方法允许我们识别相对明确的描述扩散矩阵的导数在校正。MSC 2010: 82c22, 35b27, 60k35。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smoothness
. For a class of particle systems in continuous space with local interactions, we show that the asymptotic diffusion matrix is an infinitely differentiable function of the density of particles. Our method allows us to identify relatively explicit descriptions of the derivatives of the diffusion matrix in terms of the corrector. MSC 2010: 82C22, 35B27, 60K35.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信