基于FPGA的脉冲神经网络多类分类实现

Jin Zhang, Lei Zhang
{"title":"基于FPGA的脉冲神经网络多类分类实现","authors":"Jin Zhang, Lei Zhang","doi":"10.1109/SysCon53073.2023.10131076","DOIUrl":null,"url":null,"abstract":"Spiking Neural Network (SNN) is a particular Artificial Neural Networks (ANN) form. An SNN has similar features as an ANN, but an SNN has a different information system that will allow SNN to have higher energy efficiency than an ANN. This paper presents the design and implementation of an SNN on FPGA. The model of the SNN is designed to be lower power consumption than existing SNN models in the aspect of FPGA implementation and lower accuracy loss than the existing training method in the part of the algorithm. The coding scheme of the SNN model proposed in this paper is the rate coding scheme. This paper introduces a conversion method to directly map the trained parameters from ANN to SNN with negligible classification accuracy loss. Also, this paper demonstrates the technique of FPGA implementation for Spiking Exponential Function, Spiking SoftMax Function and Dynamic Adder Tree. This paper also presents the Time Division Component Reuse technic for lower resource utilization in the FPGA implementation of SNN. The proposed model has a power efficiency of 8841.7 frames per watt with negligible accuracy loss. The benchmark SNN model has a power efficiency of 337.6 frames per watt with an accuracy loss of 1.42 percent. The reference accuracy of the ANN model is 90.36 percent. For comparison, the specific model of the SNN has an accuracy of 90.39 percent.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spiking Neural Network Implementation on FPGA for Multiclass Classification\",\"authors\":\"Jin Zhang, Lei Zhang\",\"doi\":\"10.1109/SysCon53073.2023.10131076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking Neural Network (SNN) is a particular Artificial Neural Networks (ANN) form. An SNN has similar features as an ANN, but an SNN has a different information system that will allow SNN to have higher energy efficiency than an ANN. This paper presents the design and implementation of an SNN on FPGA. The model of the SNN is designed to be lower power consumption than existing SNN models in the aspect of FPGA implementation and lower accuracy loss than the existing training method in the part of the algorithm. The coding scheme of the SNN model proposed in this paper is the rate coding scheme. This paper introduces a conversion method to directly map the trained parameters from ANN to SNN with negligible classification accuracy loss. Also, this paper demonstrates the technique of FPGA implementation for Spiking Exponential Function, Spiking SoftMax Function and Dynamic Adder Tree. This paper also presents the Time Division Component Reuse technic for lower resource utilization in the FPGA implementation of SNN. The proposed model has a power efficiency of 8841.7 frames per watt with negligible accuracy loss. The benchmark SNN model has a power efficiency of 337.6 frames per watt with an accuracy loss of 1.42 percent. The reference accuracy of the ANN model is 90.36 percent. For comparison, the specific model of the SNN has an accuracy of 90.39 percent.\",\"PeriodicalId\":169296,\"journal\":{\"name\":\"2023 IEEE International Systems Conference (SysCon)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Systems Conference (SysCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SysCon53073.2023.10131076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Systems Conference (SysCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SysCon53073.2023.10131076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脉冲神经网络(SNN)是一种特殊的人工神经网络形式。SNN具有与人工神经网络相似的特征,但SNN具有不同的信息系统,这将使SNN具有比人工神经网络更高的能源效率。本文介绍了一种基于FPGA的SNN的设计与实现。该SNN模型在FPGA实现方面比现有SNN模型功耗更低,在算法部分比现有训练方法精度损失更低。本文提出的SNN模型的编码方案是速率编码方案。本文介绍了一种将训练好的参数从人工神经网络直接映射到SNN的转换方法,其分类精度损失可以忽略不计。此外,本文还演示了脉冲指数函数、脉冲SoftMax函数和动态加法器树的FPGA实现技术。为了降低SNN的FPGA实现中的资源利用率,本文还提出了时分组件复用技术。该模型的功率效率为每瓦8841.7帧,精度损失可以忽略不计。基准SNN模型的功率效率为每瓦337.6帧,精度损失为1.42%。人工神经网络模型的参考精度为90.36%。相比之下,SNN特定模型的准确率为90.39%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spiking Neural Network Implementation on FPGA for Multiclass Classification
Spiking Neural Network (SNN) is a particular Artificial Neural Networks (ANN) form. An SNN has similar features as an ANN, but an SNN has a different information system that will allow SNN to have higher energy efficiency than an ANN. This paper presents the design and implementation of an SNN on FPGA. The model of the SNN is designed to be lower power consumption than existing SNN models in the aspect of FPGA implementation and lower accuracy loss than the existing training method in the part of the algorithm. The coding scheme of the SNN model proposed in this paper is the rate coding scheme. This paper introduces a conversion method to directly map the trained parameters from ANN to SNN with negligible classification accuracy loss. Also, this paper demonstrates the technique of FPGA implementation for Spiking Exponential Function, Spiking SoftMax Function and Dynamic Adder Tree. This paper also presents the Time Division Component Reuse technic for lower resource utilization in the FPGA implementation of SNN. The proposed model has a power efficiency of 8841.7 frames per watt with negligible accuracy loss. The benchmark SNN model has a power efficiency of 337.6 frames per watt with an accuracy loss of 1.42 percent. The reference accuracy of the ANN model is 90.36 percent. For comparison, the specific model of the SNN has an accuracy of 90.39 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信