DSS:绘制动态图形与谱稀疏

A. Meidiana, Seok-Hee Hong, Yanyi Pu, Justin Lee, P. Eades, Jinwook Seo
{"title":"DSS:绘制动态图形与谱稀疏","authors":"A. Meidiana, Seok-Hee Hong, Yanyi Pu, Justin Lee, P. Eades, Jinwook Seo","doi":"10.2312/evs.20221093","DOIUrl":null,"url":null,"abstract":"This paper presents DSS (Dynamic Spectral Sparsification), a sampling approach for drawing large and complex dynamic graphs which can preserve important structural properties of the original graph. Specifically, we present two variants: DSS-I (Independent) which performs spectral sparsification independently on each dynamic graph time slice; and DSS-U (Union) which performs spectral sparsification on the union graph of all time slices. Moreover, for evaluation of dynamic graph drawing using sampling approach, we introduce two new metrics: DSQ (Dynamic Sampling Quality) to measure how faithfully the samples represent the ground truth change in the dynamic graph, and DSDQ (Dynamic Sampling Drawing Quality) to measure how faithfully the drawings of the sample represent the ground truth change. Experiments demonstrate that DSS significantly outperform random sampling on quality metrics and visual comparison. On average, DSS obtains over 80% (resp., 30%) better DSQ (resp., DSDQ) than random sampling, and visually better preserves the ground truth changes in dynamic graphs.","PeriodicalId":224719,"journal":{"name":"Eurographics Conference on Visualization","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSS: Drawing Dynamic Graphs with Spectral Sparsification\",\"authors\":\"A. Meidiana, Seok-Hee Hong, Yanyi Pu, Justin Lee, P. Eades, Jinwook Seo\",\"doi\":\"10.2312/evs.20221093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents DSS (Dynamic Spectral Sparsification), a sampling approach for drawing large and complex dynamic graphs which can preserve important structural properties of the original graph. Specifically, we present two variants: DSS-I (Independent) which performs spectral sparsification independently on each dynamic graph time slice; and DSS-U (Union) which performs spectral sparsification on the union graph of all time slices. Moreover, for evaluation of dynamic graph drawing using sampling approach, we introduce two new metrics: DSQ (Dynamic Sampling Quality) to measure how faithfully the samples represent the ground truth change in the dynamic graph, and DSDQ (Dynamic Sampling Drawing Quality) to measure how faithfully the drawings of the sample represent the ground truth change. Experiments demonstrate that DSS significantly outperform random sampling on quality metrics and visual comparison. On average, DSS obtains over 80% (resp., 30%) better DSQ (resp., DSDQ) than random sampling, and visually better preserves the ground truth changes in dynamic graphs.\",\"PeriodicalId\":224719,\"journal\":{\"name\":\"Eurographics Conference on Visualization\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Conference on Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/evs.20221093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/evs.20221093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态谱稀疏化(DSS)是一种用于绘制大型复杂动态图的采样方法,它可以保留原始图的重要结构特性。具体来说,我们提出了两种变体:DSS-I (Independent),它在每个动态图时间片上独立执行频谱稀疏化;DSS-U (Union)对所有时间片的联合图进行光谱稀疏化。此外,为了评估采用采样方法绘制的动态图形,我们引入了两个新的指标:DSQ(动态采样质量)来衡量样本在动态图形中对地面真值变化的忠实程度,DSDQ(动态采样质量)来衡量样本的图纸对地面真值变化的忠实程度。实验表明,DSS在质量指标和视觉比较上明显优于随机抽样。平均而言,DSS获得了80%以上的成功率。, 30%)更好的DSQ (p。, DSDQ)比随机抽样,并且在视觉上更好地保留了动态图的真实变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DSS: Drawing Dynamic Graphs with Spectral Sparsification
This paper presents DSS (Dynamic Spectral Sparsification), a sampling approach for drawing large and complex dynamic graphs which can preserve important structural properties of the original graph. Specifically, we present two variants: DSS-I (Independent) which performs spectral sparsification independently on each dynamic graph time slice; and DSS-U (Union) which performs spectral sparsification on the union graph of all time slices. Moreover, for evaluation of dynamic graph drawing using sampling approach, we introduce two new metrics: DSQ (Dynamic Sampling Quality) to measure how faithfully the samples represent the ground truth change in the dynamic graph, and DSDQ (Dynamic Sampling Drawing Quality) to measure how faithfully the drawings of the sample represent the ground truth change. Experiments demonstrate that DSS significantly outperform random sampling on quality metrics and visual comparison. On average, DSS obtains over 80% (resp., 30%) better DSQ (resp., DSDQ) than random sampling, and visually better preserves the ground truth changes in dynamic graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信