{"title":"管状折纸镶嵌中的波动:与保面积图的联系","authors":"Rinki Imada, Tomohiro Tachi","doi":"10.1063/5.0160803","DOIUrl":null,"url":null,"abstract":"Origami tessellations, whose crease pattern has translational symmetries, have attracted significant attention in designing the mechanical properties of objects. Previous origami-based engineering applications have been designed based on the “uniform-folding” of origami tessellations, where the folding of each unit cell is identical. Although “nonuniform-folding” allows for nonlinear phenomena that are impossible through uniform-folding, there is no universal model for nonuniform-folding, and the underlying mathematics for some observed phenomena remains unclear. Wavy folded states that can be achieved through nonuniform-folding of the tubular origami tessellation called a waterbomb tube are an example. Recently, the authors formulated the kinematic coupled motion of unit cells within a waterbomb tube as the discrete dynamical system and identified a correspondence between its quasiperiodic solutions and wavy folded states. Here, we show that the wavy folded state is a universal phenomenon that can occur in the family of rotationally symmetric tubular origami tessellations. We represent their dynamical system as the composition of the two 2D mappings: taking the intersection of three spheres and crease pattern transformation. We show the universality of the wavy folded state through numerical calculations of phase diagrams and a geometric proof of the system’s conservativeness. Additionally, we present a non-conservative tubular origami tessellation, whose crease pattern includes scaling. The result demonstrates the potential of the dynamical system model as a universal model for nonuniform-folding or a tool for designing metamaterials.","PeriodicalId":340975,"journal":{"name":"Chaos: An Interdisciplinary Journal of Nonlinear Science","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Undulations in tubular origami tessellations: A connection to area-preserving maps\",\"authors\":\"Rinki Imada, Tomohiro Tachi\",\"doi\":\"10.1063/5.0160803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Origami tessellations, whose crease pattern has translational symmetries, have attracted significant attention in designing the mechanical properties of objects. Previous origami-based engineering applications have been designed based on the “uniform-folding” of origami tessellations, where the folding of each unit cell is identical. Although “nonuniform-folding” allows for nonlinear phenomena that are impossible through uniform-folding, there is no universal model for nonuniform-folding, and the underlying mathematics for some observed phenomena remains unclear. Wavy folded states that can be achieved through nonuniform-folding of the tubular origami tessellation called a waterbomb tube are an example. Recently, the authors formulated the kinematic coupled motion of unit cells within a waterbomb tube as the discrete dynamical system and identified a correspondence between its quasiperiodic solutions and wavy folded states. Here, we show that the wavy folded state is a universal phenomenon that can occur in the family of rotationally symmetric tubular origami tessellations. We represent their dynamical system as the composition of the two 2D mappings: taking the intersection of three spheres and crease pattern transformation. We show the universality of the wavy folded state through numerical calculations of phase diagrams and a geometric proof of the system’s conservativeness. Additionally, we present a non-conservative tubular origami tessellation, whose crease pattern includes scaling. The result demonstrates the potential of the dynamical system model as a universal model for nonuniform-folding or a tool for designing metamaterials.\",\"PeriodicalId\":340975,\"journal\":{\"name\":\"Chaos: An Interdisciplinary Journal of Nonlinear Science\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos: An Interdisciplinary Journal of Nonlinear Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0160803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos: An Interdisciplinary Journal of Nonlinear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0160803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Undulations in tubular origami tessellations: A connection to area-preserving maps
Origami tessellations, whose crease pattern has translational symmetries, have attracted significant attention in designing the mechanical properties of objects. Previous origami-based engineering applications have been designed based on the “uniform-folding” of origami tessellations, where the folding of each unit cell is identical. Although “nonuniform-folding” allows for nonlinear phenomena that are impossible through uniform-folding, there is no universal model for nonuniform-folding, and the underlying mathematics for some observed phenomena remains unclear. Wavy folded states that can be achieved through nonuniform-folding of the tubular origami tessellation called a waterbomb tube are an example. Recently, the authors formulated the kinematic coupled motion of unit cells within a waterbomb tube as the discrete dynamical system and identified a correspondence between its quasiperiodic solutions and wavy folded states. Here, we show that the wavy folded state is a universal phenomenon that can occur in the family of rotationally symmetric tubular origami tessellations. We represent their dynamical system as the composition of the two 2D mappings: taking the intersection of three spheres and crease pattern transformation. We show the universality of the wavy folded state through numerical calculations of phase diagrams and a geometric proof of the system’s conservativeness. Additionally, we present a non-conservative tubular origami tessellation, whose crease pattern includes scaling. The result demonstrates the potential of the dynamical system model as a universal model for nonuniform-folding or a tool for designing metamaterials.