基于约束全局优化的矢量量化器设计

Xiaolin Wu
{"title":"基于约束全局优化的矢量量化器设计","authors":"Xiaolin Wu","doi":"10.1109/DCC.1992.227468","DOIUrl":null,"url":null,"abstract":"Central to vector quantization is the design of optimal code book. The construction of a globally optimal code book has been shown to be NP-complete. However, if the partition halfplanes are restricted to be orthogonal to the principal direction of the training vectors, then the globally optimal K-partition of a set of N D-dimensional data points can be computed in O((N+KM/sup 2/)D) time by dynamic programming, where M is the intensity resolution. This constrained optimization strategy improves the performance of vector quantizer over the classic LBG algorithm and the popular methods of tree-structured recursive greedy bipartition of the training data set.<<ETX>>","PeriodicalId":170269,"journal":{"name":"Data Compression Conference, 1992.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Vector quantizer design by constrained global optimization\",\"authors\":\"Xiaolin Wu\",\"doi\":\"10.1109/DCC.1992.227468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Central to vector quantization is the design of optimal code book. The construction of a globally optimal code book has been shown to be NP-complete. However, if the partition halfplanes are restricted to be orthogonal to the principal direction of the training vectors, then the globally optimal K-partition of a set of N D-dimensional data points can be computed in O((N+KM/sup 2/)D) time by dynamic programming, where M is the intensity resolution. This constrained optimization strategy improves the performance of vector quantizer over the classic LBG algorithm and the popular methods of tree-structured recursive greedy bipartition of the training data set.<<ETX>>\",\"PeriodicalId\":170269,\"journal\":{\"name\":\"Data Compression Conference, 1992.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Compression Conference, 1992.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1992.227468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Compression Conference, 1992.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1992.227468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

矢量量化的核心是优化代码本的设计。构造一个全局最优的代码本已被证明是np完全的。然而,如果分割半平面被限制为与训练向量的主方向正交,则通过动态规划可以在O((N+KM/sup 2/)D)时间内计算出N维数据点集合的全局最优k分割,其中M为强度分辨率。这种约束优化策略提高了矢量量化器的性能,优于经典的LBG算法和流行的训练数据集的树结构递归贪婪二分法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector quantizer design by constrained global optimization
Central to vector quantization is the design of optimal code book. The construction of a globally optimal code book has been shown to be NP-complete. However, if the partition halfplanes are restricted to be orthogonal to the principal direction of the training vectors, then the globally optimal K-partition of a set of N D-dimensional data points can be computed in O((N+KM/sup 2/)D) time by dynamic programming, where M is the intensity resolution. This constrained optimization strategy improves the performance of vector quantizer over the classic LBG algorithm and the popular methods of tree-structured recursive greedy bipartition of the training data set.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信