时间序列数据归算方法的比较研究

D. Khan, A. Lazar
{"title":"时间序列数据归算方法的比较研究","authors":"D. Khan, A. Lazar","doi":"10.32473/flairs.36.133068","DOIUrl":null,"url":null,"abstract":"Missing and incomplete values pose a significant challenge in analyzing tabular and time-series data. Dealing with missing values is time-consuming and tedious, especially when working with data from real-world applications. While some imputation approaches estimate missing values based on existing observations, these methods often rely on strong assumptions about the data distribution, which only sometimes improves downstream accuracy. Although tabular imputation methods can be applied to time-series data, incorporating the time component can enhance accuracy. This study evaluates various techniques for missing data imputation in time-series data. We run experiments on four multi-variate time series datasets using five imputation methods. We report training time and testing accuracy.","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Imputation Methods for Time Series Data\",\"authors\":\"D. Khan, A. Lazar\",\"doi\":\"10.32473/flairs.36.133068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Missing and incomplete values pose a significant challenge in analyzing tabular and time-series data. Dealing with missing values is time-consuming and tedious, especially when working with data from real-world applications. While some imputation approaches estimate missing values based on existing observations, these methods often rely on strong assumptions about the data distribution, which only sometimes improves downstream accuracy. Although tabular imputation methods can be applied to time-series data, incorporating the time component can enhance accuracy. This study evaluates various techniques for missing data imputation in time-series data. We run experiments on four multi-variate time series datasets using five imputation methods. We report training time and testing accuracy.\",\"PeriodicalId\":302103,\"journal\":{\"name\":\"The International FLAIRS Conference Proceedings\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International FLAIRS Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32473/flairs.36.133068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

缺失和不完整的值对分析表格和时间序列数据提出了重大挑战。处理缺失值既耗时又乏味,尤其是在处理来自实际应用程序的数据时。虽然一些估算方法基于现有的观测值来估计缺失值,但这些方法通常依赖于对数据分布的强假设,这只能有时提高下游的精度。虽然表列法可以应用于时间序列数据,但合并时间分量可以提高精度。本研究评估了在时间序列数据中缺失数据的各种输入技术。我们使用五种方法对四个多变量时间序列数据集进行了实验。我们报告训练时间和测试准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of Imputation Methods for Time Series Data
Missing and incomplete values pose a significant challenge in analyzing tabular and time-series data. Dealing with missing values is time-consuming and tedious, especially when working with data from real-world applications. While some imputation approaches estimate missing values based on existing observations, these methods often rely on strong assumptions about the data distribution, which only sometimes improves downstream accuracy. Although tabular imputation methods can be applied to time-series data, incorporating the time component can enhance accuracy. This study evaluates various techniques for missing data imputation in time-series data. We run experiments on four multi-variate time series datasets using five imputation methods. We report training time and testing accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信