透过外表看:使用多视角服装图像进行身材估计

Wei-Yi Chang, Y. Wang
{"title":"透过外表看:使用多视角服装图像进行身材估计","authors":"Wei-Yi Chang, Y. Wang","doi":"10.1109/ICME.2015.7177402","DOIUrl":null,"url":null,"abstract":"We propose a learning-based algorithm for body shape estimation, which only requires 2D clothing images taken in multiple views as the input data. Compared with the use of 3D scanners or depth cameras, although our setting is more user friendly, it also makes the learning and estimation problems more challenging. In addition to utilizing ground truth body images for constructing human body models at each view of interest, our work uniquely associates the anthropometric measurements (e.g., body height or leg length) across different views. For performing body shape estimation using multi-view clothing images, the proposed algorithm solves an optimization task which recovers the body shape with image and measurement reconstruction guarantees. In the experiments, we will show that the use of our proposed method would achieve satisfactory estimation results, and performs favorably against single-view or other baseline approaches for both body shape and measurement estimation.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Seeing through the appearance: Body shape estimation using multi-view clothing images\",\"authors\":\"Wei-Yi Chang, Y. Wang\",\"doi\":\"10.1109/ICME.2015.7177402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a learning-based algorithm for body shape estimation, which only requires 2D clothing images taken in multiple views as the input data. Compared with the use of 3D scanners or depth cameras, although our setting is more user friendly, it also makes the learning and estimation problems more challenging. In addition to utilizing ground truth body images for constructing human body models at each view of interest, our work uniquely associates the anthropometric measurements (e.g., body height or leg length) across different views. For performing body shape estimation using multi-view clothing images, the proposed algorithm solves an optimization task which recovers the body shape with image and measurement reconstruction guarantees. In the experiments, we will show that the use of our proposed method would achieve satisfactory estimation results, and performs favorably against single-view or other baseline approaches for both body shape and measurement estimation.\",\"PeriodicalId\":146271,\"journal\":{\"name\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2015.7177402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了一种基于学习的体型估计算法,该算法只需要在多个视图中拍摄二维服装图像作为输入数据。与使用3D扫描仪或深度相机相比,虽然我们的设置更加用户友好,但它也使学习和估计问题更具挑战性。除了利用地面真实身体图像在每个感兴趣的视图中构建人体模型外,我们的工作还独特地将不同视图中的人体测量值(例如身体高度或腿长)联系起来。针对多视角服装图像的体型估计,该算法解决了在图像和测量重建保证的情况下恢复体型的优化问题。在实验中,我们将证明使用我们提出的方法将获得令人满意的估计结果,并且在体型和测量估计方面优于单视图或其他基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seeing through the appearance: Body shape estimation using multi-view clothing images
We propose a learning-based algorithm for body shape estimation, which only requires 2D clothing images taken in multiple views as the input data. Compared with the use of 3D scanners or depth cameras, although our setting is more user friendly, it also makes the learning and estimation problems more challenging. In addition to utilizing ground truth body images for constructing human body models at each view of interest, our work uniquely associates the anthropometric measurements (e.g., body height or leg length) across different views. For performing body shape estimation using multi-view clothing images, the proposed algorithm solves an optimization task which recovers the body shape with image and measurement reconstruction guarantees. In the experiments, we will show that the use of our proposed method would achieve satisfactory estimation results, and performs favorably against single-view or other baseline approaches for both body shape and measurement estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信