自然语言处理中的知识增强方法

Chenguang Zhu, Yichong Xu, Xiang Ren, Bill Yuchen Lin, Meng Jiang, Wenhao Yu
{"title":"自然语言处理中的知识增强方法","authors":"Chenguang Zhu, Yichong Xu, Xiang Ren, Bill Yuchen Lin, Meng Jiang, Wenhao Yu","doi":"10.1145/3539597.3572720","DOIUrl":null,"url":null,"abstract":"Knowledge in natural language processing (NLP) has been a rising trend especially after the advent of large scale pre-trained models. NLP models with attention to knowledge can i) access unlimited amount of external information; ii) delegate the task of storing knowledge from its parameter space to knowledge sources; iii) obtain up-to-date information; iv) make prediction results more explainable via selected knowledge. In this tutorial, we will introduce the key steps in integrating knowledge into NLP, including knowledge grounding from text, knowledge representation and fusing. In addition, we will introduce recent state-of-the-art applications in fusing knowledge into language understanding, language generation and commonsense reasoning.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Knowledge-Augmented Methods for Natural Language Processing\",\"authors\":\"Chenguang Zhu, Yichong Xu, Xiang Ren, Bill Yuchen Lin, Meng Jiang, Wenhao Yu\",\"doi\":\"10.1145/3539597.3572720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge in natural language processing (NLP) has been a rising trend especially after the advent of large scale pre-trained models. NLP models with attention to knowledge can i) access unlimited amount of external information; ii) delegate the task of storing knowledge from its parameter space to knowledge sources; iii) obtain up-to-date information; iv) make prediction results more explainable via selected knowledge. In this tutorial, we will introduce the key steps in integrating knowledge into NLP, including knowledge grounding from text, knowledge representation and fusing. In addition, we will introduce recent state-of-the-art applications in fusing knowledge into language understanding, language generation and commonsense reasoning.\",\"PeriodicalId\":227804,\"journal\":{\"name\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539597.3572720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3572720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

特别是在大规模预训练模型出现之后,自然语言处理(NLP)中的知识已经成为一个上升的趋势。关注知识的NLP模型可以i)获取无限量的外部信息;Ii)将从参数空间存储知识的任务委托给知识源;Iii)获取最新信息;Iv)通过选择的知识使预测结果更具可解释性。在本教程中,我们将介绍将知识整合到NLP中的关键步骤,包括文本知识基础,知识表示和融合。此外,我们将介绍最新的最新应用,将知识融合到语言理解,语言生成和常识推理中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge-Augmented Methods for Natural Language Processing
Knowledge in natural language processing (NLP) has been a rising trend especially after the advent of large scale pre-trained models. NLP models with attention to knowledge can i) access unlimited amount of external information; ii) delegate the task of storing knowledge from its parameter space to knowledge sources; iii) obtain up-to-date information; iv) make prediction results more explainable via selected knowledge. In this tutorial, we will introduce the key steps in integrating knowledge into NLP, including knowledge grounding from text, knowledge representation and fusing. In addition, we will introduce recent state-of-the-art applications in fusing knowledge into language understanding, language generation and commonsense reasoning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信