基于GPU的协同过滤推荐系统改进

Gao Zhanchun, Li Yuying
{"title":"基于GPU的协同过滤推荐系统改进","authors":"Gao Zhanchun, Li Yuying","doi":"10.1109/CYBERC.2012.62","DOIUrl":null,"url":null,"abstract":"As the expansion of Internet, the recommender system is attracting the attention of many industry engineers and researcher, especially the collaborating filtering recommender system. However, there are still some challenges. For example, the sparse feature and large scale system degrades the recommendation accuracy and efficiency. In this paper, we propose implied-similarity and filled-default-value methods to improve the denseness of the preference matrix and use GPU to parallel the process. Our experiments show that the accuracy can improve 20% and efficiency can speed up 4 times.","PeriodicalId":416468,"journal":{"name":"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Improving the Collaborative Filtering Recommender System by Using GPU\",\"authors\":\"Gao Zhanchun, Li Yuying\",\"doi\":\"10.1109/CYBERC.2012.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the expansion of Internet, the recommender system is attracting the attention of many industry engineers and researcher, especially the collaborating filtering recommender system. However, there are still some challenges. For example, the sparse feature and large scale system degrades the recommendation accuracy and efficiency. In this paper, we propose implied-similarity and filled-default-value methods to improve the denseness of the preference matrix and use GPU to parallel the process. Our experiments show that the accuracy can improve 20% and efficiency can speed up 4 times.\",\"PeriodicalId\":416468,\"journal\":{\"name\":\"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERC.2012.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2012.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着互联网的发展,推荐系统受到了众多行业工程师和研究者的关注,尤其是协同过滤推荐系统。然而,仍然存在一些挑战。例如,稀疏特征和大规模系统降低了推荐的准确性和效率。在本文中,我们提出了隐式相似度和填充默认值方法来提高偏好矩阵的密度,并使用GPU来并行处理。实验表明,该方法的精度提高了20%,效率提高了4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Collaborative Filtering Recommender System by Using GPU
As the expansion of Internet, the recommender system is attracting the attention of many industry engineers and researcher, especially the collaborating filtering recommender system. However, there are still some challenges. For example, the sparse feature and large scale system degrades the recommendation accuracy and efficiency. In this paper, we propose implied-similarity and filled-default-value methods to improve the denseness of the preference matrix and use GPU to parallel the process. Our experiments show that the accuracy can improve 20% and efficiency can speed up 4 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信