模型可再生能源微电网的最优减载方案

Paul Muia Musyoka, P. Musau, A. Nyete
{"title":"模型可再生能源微电网的最优减载方案","authors":"Paul Muia Musyoka, P. Musau, A. Nyete","doi":"10.1109/PowerAfrica49420.2020.9219902","DOIUrl":null,"url":null,"abstract":"Optimization of demand control in renewable energy micro-grids involves developing load shedding schemes and searching for the most optimum. With climate change campaign in favor of renewable energy micro-grids or integration to national grids, the stability of the systems becomes more unpredictable. Its therefore justified, technically and economically, to optimize both unit commitment plans to track the load curve closely and design load-shedding schemes that attain the voltage and frequency limits, while retaining maximum load on the grid. The study shows that through load-shedding, renewable energy micro-grids can be operated in the stable state at the expense of loads during times of severe power imbalances. Optimization of the load-shedding using PSO-GA technique ensure optimum amount of load is shed from the grid with each possible load shedding scheme getting evaluated first and selection of most effective scheme with priority for loads is accomplished.","PeriodicalId":325937,"journal":{"name":"2020 IEEE PES/IAS PowerAfrica","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Load Shedding Scheme for a Model Renewable Energy Micro-Grid\",\"authors\":\"Paul Muia Musyoka, P. Musau, A. Nyete\",\"doi\":\"10.1109/PowerAfrica49420.2020.9219902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization of demand control in renewable energy micro-grids involves developing load shedding schemes and searching for the most optimum. With climate change campaign in favor of renewable energy micro-grids or integration to national grids, the stability of the systems becomes more unpredictable. Its therefore justified, technically and economically, to optimize both unit commitment plans to track the load curve closely and design load-shedding schemes that attain the voltage and frequency limits, while retaining maximum load on the grid. The study shows that through load-shedding, renewable energy micro-grids can be operated in the stable state at the expense of loads during times of severe power imbalances. Optimization of the load-shedding using PSO-GA technique ensure optimum amount of load is shed from the grid with each possible load shedding scheme getting evaluated first and selection of most effective scheme with priority for loads is accomplished.\",\"PeriodicalId\":325937,\"journal\":{\"name\":\"2020 IEEE PES/IAS PowerAfrica\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE PES/IAS PowerAfrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerAfrica49420.2020.9219902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE PES/IAS PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica49420.2020.9219902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

可再生能源微电网的需求控制优化包括制定减载方案和寻找最优方案。随着气候变化运动有利于可再生能源微电网或与国家电网的整合,系统的稳定性变得更加不可预测。因此,在技术上和经济上,优化机组承诺计划,密切跟踪负荷曲线,设计达到电压和频率限制的减载方案,同时保持电网最大负荷,是合理的。研究表明,通过减载,可再生能源微电网可以在电力严重不平衡时以牺牲负荷为代价实现稳定运行。利用PSO-GA技术进行减载优化,首先对各种可能的减载方案进行评估,选择出最有效的减载方案,并对负荷进行优先级优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Load Shedding Scheme for a Model Renewable Energy Micro-Grid
Optimization of demand control in renewable energy micro-grids involves developing load shedding schemes and searching for the most optimum. With climate change campaign in favor of renewable energy micro-grids or integration to national grids, the stability of the systems becomes more unpredictable. Its therefore justified, technically and economically, to optimize both unit commitment plans to track the load curve closely and design load-shedding schemes that attain the voltage and frequency limits, while retaining maximum load on the grid. The study shows that through load-shedding, renewable energy micro-grids can be operated in the stable state at the expense of loads during times of severe power imbalances. Optimization of the load-shedding using PSO-GA technique ensure optimum amount of load is shed from the grid with each possible load shedding scheme getting evaluated first and selection of most effective scheme with priority for loads is accomplished.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信