{"title":"时间序列预测递归网络协同进化的组合问题分解方法","authors":"Ravneil Nand, M. Naseem, E. Reddy, B. Sharma","doi":"10.1109/APWCONCSE.2017.00021","DOIUrl":null,"url":null,"abstract":"The breaking down of a particular problem through problem decomposition has enabled complex problems to be solved efficiently. The two major problem decomposition methods used in cooperative coevolution are synapse and neuron level. The combination of both the problem decomposition as a hybrid problem decomposition has been seen applied in time series prediction. The different problem decomposition methods applied at particular area of a network can share its strengths to solve the problem better, which forms the major motivation. In this paper, we are proposing a combination utilization of two hybrid problem decomposition method for Elman recurrent neural networks and applied to time series prediction. The results reveal that the proposed method has got better results in some datasets when compared to its standalone methods. The results are better in selected cases for proposed method when compared to several other approaches from the literature.","PeriodicalId":215519,"journal":{"name":"2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinational Problem Decomposition Method for Cooperative Coevolution of Recurrent Networks for Time Series Prediction\",\"authors\":\"Ravneil Nand, M. Naseem, E. Reddy, B. Sharma\",\"doi\":\"10.1109/APWCONCSE.2017.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The breaking down of a particular problem through problem decomposition has enabled complex problems to be solved efficiently. The two major problem decomposition methods used in cooperative coevolution are synapse and neuron level. The combination of both the problem decomposition as a hybrid problem decomposition has been seen applied in time series prediction. The different problem decomposition methods applied at particular area of a network can share its strengths to solve the problem better, which forms the major motivation. In this paper, we are proposing a combination utilization of two hybrid problem decomposition method for Elman recurrent neural networks and applied to time series prediction. The results reveal that the proposed method has got better results in some datasets when compared to its standalone methods. The results are better in selected cases for proposed method when compared to several other approaches from the literature.\",\"PeriodicalId\":215519,\"journal\":{\"name\":\"2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APWCONCSE.2017.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWCONCSE.2017.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combinational Problem Decomposition Method for Cooperative Coevolution of Recurrent Networks for Time Series Prediction
The breaking down of a particular problem through problem decomposition has enabled complex problems to be solved efficiently. The two major problem decomposition methods used in cooperative coevolution are synapse and neuron level. The combination of both the problem decomposition as a hybrid problem decomposition has been seen applied in time series prediction. The different problem decomposition methods applied at particular area of a network can share its strengths to solve the problem better, which forms the major motivation. In this paper, we are proposing a combination utilization of two hybrid problem decomposition method for Elman recurrent neural networks and applied to time series prediction. The results reveal that the proposed method has got better results in some datasets when compared to its standalone methods. The results are better in selected cases for proposed method when compared to several other approaches from the literature.