TBSSvis:时间盲源分离的可视化分析

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Nikolaus Piccolotto , Markus Bögl , Theresia Gschwandtner , Christoph Muehlmann , Klaus Nordhausen , Peter Filzmoser , Silvia Miksch
{"title":"TBSSvis:时间盲源分离的可视化分析","authors":"Nikolaus Piccolotto ,&nbsp;Markus Bögl ,&nbsp;Theresia Gschwandtner ,&nbsp;Christoph Muehlmann ,&nbsp;Klaus Nordhausen ,&nbsp;Peter Filzmoser ,&nbsp;Silvia Miksch","doi":"10.1016/j.visinf.2022.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Temporal Blind Source Separation (TBSS) is used to obtain the true underlying processes from noisy temporal multivariate data, such as electrocardiograms. TBSS has similarities to Principal Component Analysis (PCA) as it separates the input data into univariate components and is applicable to suitable datasets from various domains, such as medicine, finance, or civil engineering. Despite TBSS’s broad applicability, the involved tasks are not well supported in current tools, which offer only text-based interactions and single static images. Analysts are limited in analyzing and comparing obtained results, which consist of diverse data such as matrices and sets of time series. Additionally, parameter settings have a big impact on separation performance, but as a consequence of improper tooling, analysts currently do not consider the whole parameter space. We propose to solve these problems by applying visual analytics (VA) principles. Our primary contribution is a design study for TBSS, which so far has not been explored by the visualization community. We developed a task abstraction and visualization design in a user-centered design process. Task-specific assembling of well-established visualization techniques and algorithms to gain insights in the TBSS processes is our secondary contribution. We present TBSSvis, an interactive web-based VA prototype, which we evaluated extensively in two interviews with five TBSS experts. Feedback and observations from these interviews show that TBSSvis supports the actual workflow and combination of interactive visualizations that facilitate the tasks involved in analyzing TBSS results.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 4","pages":"Pages 51-66"},"PeriodicalIF":3.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22001103/pdfft?md5=e16a9a59f900c2b2e1e6e50729e1b03e&pid=1-s2.0-S2468502X22001103-main.pdf","citationCount":"6","resultStr":"{\"title\":\"TBSSvis: Visual analytics for Temporal Blind Source Separation\",\"authors\":\"Nikolaus Piccolotto ,&nbsp;Markus Bögl ,&nbsp;Theresia Gschwandtner ,&nbsp;Christoph Muehlmann ,&nbsp;Klaus Nordhausen ,&nbsp;Peter Filzmoser ,&nbsp;Silvia Miksch\",\"doi\":\"10.1016/j.visinf.2022.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Temporal Blind Source Separation (TBSS) is used to obtain the true underlying processes from noisy temporal multivariate data, such as electrocardiograms. TBSS has similarities to Principal Component Analysis (PCA) as it separates the input data into univariate components and is applicable to suitable datasets from various domains, such as medicine, finance, or civil engineering. Despite TBSS’s broad applicability, the involved tasks are not well supported in current tools, which offer only text-based interactions and single static images. Analysts are limited in analyzing and comparing obtained results, which consist of diverse data such as matrices and sets of time series. Additionally, parameter settings have a big impact on separation performance, but as a consequence of improper tooling, analysts currently do not consider the whole parameter space. We propose to solve these problems by applying visual analytics (VA) principles. Our primary contribution is a design study for TBSS, which so far has not been explored by the visualization community. We developed a task abstraction and visualization design in a user-centered design process. Task-specific assembling of well-established visualization techniques and algorithms to gain insights in the TBSS processes is our secondary contribution. We present TBSSvis, an interactive web-based VA prototype, which we evaluated extensively in two interviews with five TBSS experts. Feedback and observations from these interviews show that TBSSvis supports the actual workflow and combination of interactive visualizations that facilitate the tasks involved in analyzing TBSS results.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"6 4\",\"pages\":\"Pages 51-66\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22001103/pdfft?md5=e16a9a59f900c2b2e1e6e50729e1b03e&pid=1-s2.0-S2468502X22001103-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22001103\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22001103","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 6

摘要

时间盲源分离(TBSS)用于从有噪声的时间多变量数据(如心电图)中获得真实的底层过程。TBSS与主成分分析(PCA)有相似之处,因为它将输入数据分离为单变量成分,适用于来自不同领域的合适数据集,如医学、金融或土木工程。尽管TBSS具有广泛的适用性,但目前的工具并不能很好地支持所涉及的任务,它们只提供基于文本的交互和单个静态图像。分析人员在分析和比较获得的结果时受到限制,这些结果由不同的数据(如矩阵和时间序列集)组成。此外,参数设置对分离性能有很大影响,但由于工具不当,分析人员目前没有考虑整个参数空间。我们建议通过应用视觉分析(VA)原理来解决这些问题。我们的主要贡献是对TBSS的设计研究,迄今为止还没有被可视化社区探索过。我们在以用户为中心的设计过程中开发了任务抽象和可视化设计。我们的第二项贡献是针对特定任务的可视化技术和算法的集合,以获得对TBSS过程的见解。我们提出了TBSSvis,一个交互式的基于网络的VA原型,我们在与五位TBSS专家的两次访谈中对其进行了广泛的评估。来自这些访谈的反馈和观察表明,TBSSvis支持实际的工作流程和交互式可视化的组合,从而促进了分析TBSS结果所涉及的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TBSSvis: Visual analytics for Temporal Blind Source Separation

Temporal Blind Source Separation (TBSS) is used to obtain the true underlying processes from noisy temporal multivariate data, such as electrocardiograms. TBSS has similarities to Principal Component Analysis (PCA) as it separates the input data into univariate components and is applicable to suitable datasets from various domains, such as medicine, finance, or civil engineering. Despite TBSS’s broad applicability, the involved tasks are not well supported in current tools, which offer only text-based interactions and single static images. Analysts are limited in analyzing and comparing obtained results, which consist of diverse data such as matrices and sets of time series. Additionally, parameter settings have a big impact on separation performance, but as a consequence of improper tooling, analysts currently do not consider the whole parameter space. We propose to solve these problems by applying visual analytics (VA) principles. Our primary contribution is a design study for TBSS, which so far has not been explored by the visualization community. We developed a task abstraction and visualization design in a user-centered design process. Task-specific assembling of well-established visualization techniques and algorithms to gain insights in the TBSS processes is our secondary contribution. We present TBSSvis, an interactive web-based VA prototype, which we evaluated extensively in two interviews with five TBSS experts. Feedback and observations from these interviews show that TBSSvis supports the actual workflow and combination of interactive visualizations that facilitate the tasks involved in analyzing TBSS results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信