推特同行推荐的混合算法

J. Liu, Zongnong Meng, Yan-Xing Hu, Yulin He, S. Shiu, Vincent W. S. Cho
{"title":"推特同行推荐的混合算法","authors":"J. Liu, Zongnong Meng, Yan-Xing Hu, Yulin He, S. Shiu, Vincent W. S. Cho","doi":"10.1145/2554850.2555138","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid algorithm in the area of peer recommendation in Twitter. Due to the big data issue on Twitter, we define a filtering strategy to reduce the number of candidates who might be recommended to the target user. Meanwhile, we refine the content-based similarity and graph-based similarity algorithms proposed by other academics. Moreover, we define a user model and weighting formula to leverage these two algorithms. According to the similarity degree between the candidates and the target user, we recommend the top k most similar candidates to the target user as our focused peers. In order to evaluate the effectiveness of our proposed algorithms and other algorithms, we conduct a personalized survey and employ measurements like recall, precision and F1 metric. The evaluation results demonstrate that our hybrid algorithm is better than the pure content-based similarity algorithm and pure graph-based similarity algorithm.","PeriodicalId":285655,"journal":{"name":"Proceedings of the 29th Annual ACM Symposium on Applied Computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A hybrid algorithm for recommendation twitter peers\",\"authors\":\"J. Liu, Zongnong Meng, Yan-Xing Hu, Yulin He, S. Shiu, Vincent W. S. Cho\",\"doi\":\"10.1145/2554850.2555138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hybrid algorithm in the area of peer recommendation in Twitter. Due to the big data issue on Twitter, we define a filtering strategy to reduce the number of candidates who might be recommended to the target user. Meanwhile, we refine the content-based similarity and graph-based similarity algorithms proposed by other academics. Moreover, we define a user model and weighting formula to leverage these two algorithms. According to the similarity degree between the candidates and the target user, we recommend the top k most similar candidates to the target user as our focused peers. In order to evaluate the effectiveness of our proposed algorithms and other algorithms, we conduct a personalized survey and employ measurements like recall, precision and F1 metric. The evaluation results demonstrate that our hybrid algorithm is better than the pure content-based similarity algorithm and pure graph-based similarity algorithm.\",\"PeriodicalId\":285655,\"journal\":{\"name\":\"Proceedings of the 29th Annual ACM Symposium on Applied Computing\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th Annual ACM Symposium on Applied Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2554850.2555138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th Annual ACM Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554850.2555138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种Twitter同行推荐领域的混合算法。由于Twitter上的大数据问题,我们定义了一个过滤策略,以减少可能被推荐给目标用户的候选人数量。同时,对其他学者提出的基于内容的相似度算法和基于图的相似度算法进行了改进。此外,我们定义了一个用户模型和加权公式来利用这两种算法。根据候选人与目标用户的相似度,我们向目标用户推荐最相似的前k名候选人作为我们的关注同伴。为了评估我们提出的算法和其他算法的有效性,我们进行了个性化的调查,并采用了召回率、精度和F1度量等测量方法。评价结果表明,混合算法优于纯基于内容的相似度算法和纯基于图的相似度算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid algorithm for recommendation twitter peers
This paper presents a hybrid algorithm in the area of peer recommendation in Twitter. Due to the big data issue on Twitter, we define a filtering strategy to reduce the number of candidates who might be recommended to the target user. Meanwhile, we refine the content-based similarity and graph-based similarity algorithms proposed by other academics. Moreover, we define a user model and weighting formula to leverage these two algorithms. According to the similarity degree between the candidates and the target user, we recommend the top k most similar candidates to the target user as our focused peers. In order to evaluate the effectiveness of our proposed algorithms and other algorithms, we conduct a personalized survey and employ measurements like recall, precision and F1 metric. The evaluation results demonstrate that our hybrid algorithm is better than the pure content-based similarity algorithm and pure graph-based similarity algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信