卷积神经网络中激活函数的比较

Maria Pavlova
{"title":"卷积神经网络中激活函数的比较","authors":"Maria Pavlova","doi":"10.1109/TELECOM50385.2020.9299559","DOIUrl":null,"url":null,"abstract":"The Convolution Neural Network (CNN) is a network with an input that is solely images. It is very useful as a powerful instrument for object recognition. This paper presents a part of a research in an area of the object recognition with a CNN for recognition of forest fires. The paper presents the different activation functions used in the CNN and the aim of the paper is a comparison between all of them. There are limitations in this field of research and in this paper information on them is provided.","PeriodicalId":300010,"journal":{"name":"2020 28th National Conference with International Participation (TELECOM)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of Activation Functions in Convolution Neural Network\",\"authors\":\"Maria Pavlova\",\"doi\":\"10.1109/TELECOM50385.2020.9299559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Convolution Neural Network (CNN) is a network with an input that is solely images. It is very useful as a powerful instrument for object recognition. This paper presents a part of a research in an area of the object recognition with a CNN for recognition of forest fires. The paper presents the different activation functions used in the CNN and the aim of the paper is a comparison between all of them. There are limitations in this field of research and in this paper information on them is provided.\",\"PeriodicalId\":300010,\"journal\":{\"name\":\"2020 28th National Conference with International Participation (TELECOM)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th National Conference with International Participation (TELECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELECOM50385.2020.9299559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th National Conference with International Participation (TELECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELECOM50385.2020.9299559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

卷积神经网络(CNN)是一种输入仅为图像的网络。作为一种强大的物体识别工具,它是非常有用的。本文介绍了用CNN识别森林火灾的目标识别领域的一部分研究。本文介绍了在CNN中使用的不同的激活函数,本文的目的是对它们进行比较。这一领域的研究存在局限性,本文提供了相关信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Activation Functions in Convolution Neural Network
The Convolution Neural Network (CNN) is a network with an input that is solely images. It is very useful as a powerful instrument for object recognition. This paper presents a part of a research in an area of the object recognition with a CNN for recognition of forest fires. The paper presents the different activation functions used in the CNN and the aim of the paper is a comparison between all of them. There are limitations in this field of research and in this paper information on them is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信