客户流失预测的时间方法:金融服务的案例研究

Marcus Almeida, M. Mota, Wellington Souza, Marcos Nicolau, E. Luz, G. Moreira
{"title":"客户流失预测的时间方法:金融服务的案例研究","authors":"Marcus Almeida, M. Mota, Wellington Souza, Marcos Nicolau, E. Luz, G. Moreira","doi":"10.5753/eniac.2022.227571","DOIUrl":null,"url":null,"abstract":"Modelos de previsão de desligamento de clientes visam detectar clientes com alta probabilidade de cancelamento do contrato, com base no uso dos serviços oferecidos. Propomos uma abordagem temporal para a etapa de rotulagem, baseada na redução da frequência de uso dos serviços, por meio do comportamento de cada cliente. Também propomos uma arquitetura de rede neural temporal para a tarefa. A abordagem foi avaliada em um conjunto de dados reais, fornecido por uma empresa brasileira do setor financeiro. A rede neural convolucional temporal alcançou uma acurácia de 82, 63%, uma sensibilidade de 61, 5% e uma precisão de 41, 58%, superando outros classificadores tradicionais (XG-Boost e Floresta Aleatória).","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Temporal Approach to Customer Churn Prediction: A Case Study for Financial Services\",\"authors\":\"Marcus Almeida, M. Mota, Wellington Souza, Marcos Nicolau, E. Luz, G. Moreira\",\"doi\":\"10.5753/eniac.2022.227571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modelos de previsão de desligamento de clientes visam detectar clientes com alta probabilidade de cancelamento do contrato, com base no uso dos serviços oferecidos. Propomos uma abordagem temporal para a etapa de rotulagem, baseada na redução da frequência de uso dos serviços, por meio do comportamento de cada cliente. Também propomos uma arquitetura de rede neural temporal para a tarefa. A abordagem foi avaliada em um conjunto de dados reais, fornecido por uma empresa brasileira do setor financeiro. A rede neural convolucional temporal alcançou uma acurácia de 82, 63%, uma sensibilidade de 61, 5% e uma precisão de 41, 58%, superando outros classificadores tradicionais (XG-Boost e Floresta Aleatória).\",\"PeriodicalId\":165095,\"journal\":{\"name\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2022.227571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

客户关闭预测模型的目的是根据所提供服务的使用情况,检测具有高合同取消概率的客户。我们提出了一种基于减少服务使用频率的标签步骤的时间方法,通过每个客户的行为。我们还提出了一种针对该任务的时间神经网络架构。该方法是根据一家巴西金融公司提供的一组真实数据进行评估的。时间卷积神经网络的准确率为82.63%,灵敏度为61.5%,准确率为41.58%,超过了其他传统分类器(XG-Boost和随机森林)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Temporal Approach to Customer Churn Prediction: A Case Study for Financial Services
Modelos de previsão de desligamento de clientes visam detectar clientes com alta probabilidade de cancelamento do contrato, com base no uso dos serviços oferecidos. Propomos uma abordagem temporal para a etapa de rotulagem, baseada na redução da frequência de uso dos serviços, por meio do comportamento de cada cliente. Também propomos uma arquitetura de rede neural temporal para a tarefa. A abordagem foi avaliada em um conjunto de dados reais, fornecido por uma empresa brasileira do setor financeiro. A rede neural convolucional temporal alcançou uma acurácia de 82, 63%, uma sensibilidade de 61, 5% e uma precisão de 41, 58%, superando outros classificadores tradicionais (XG-Boost e Floresta Aleatória).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信