大规模随机网络上具有耗散非线性的非线性系统的同步

Amit Diwadkar, U. Vaidya
{"title":"大规模随机网络上具有耗散非线性的非线性系统的同步","authors":"Amit Diwadkar, U. Vaidya","doi":"10.1109/INDIANCC.2016.7441128","DOIUrl":null,"url":null,"abstract":"In this paper, we study the synchronization of identical nonlinear systems over large-scale network with uncertainty in the interconnections. We consider a special class of nonlinear systems which have a dissipative nonlinearity and the stability of such systems can be analyzed using absolute stability theory tools like the Positive Real Lemma, Bounded Real Lemma and dissipativity theory. We extend this analysis to the stochastic setting over a network where the interconnection weights are drive by Wiener process with given mean and variance. To capture the stability of the synchronized state, we study the notion of mean square stability from stochastic stability theory and formulate a network size-independent sufficient condition based on the theory of stochastic dissipative systems. We also compute a heuristic margin of synchronization for the networked systems to indicate the tolerance to stochastic uncertainty in interconnection links.","PeriodicalId":286356,"journal":{"name":"2016 Indian Control Conference (ICC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synchronization of nonlinear systems with dissipative nonlinearity over large-scale stochastic networks\",\"authors\":\"Amit Diwadkar, U. Vaidya\",\"doi\":\"10.1109/INDIANCC.2016.7441128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the synchronization of identical nonlinear systems over large-scale network with uncertainty in the interconnections. We consider a special class of nonlinear systems which have a dissipative nonlinearity and the stability of such systems can be analyzed using absolute stability theory tools like the Positive Real Lemma, Bounded Real Lemma and dissipativity theory. We extend this analysis to the stochastic setting over a network where the interconnection weights are drive by Wiener process with given mean and variance. To capture the stability of the synchronized state, we study the notion of mean square stability from stochastic stability theory and formulate a network size-independent sufficient condition based on the theory of stochastic dissipative systems. We also compute a heuristic margin of synchronization for the networked systems to indicate the tolerance to stochastic uncertainty in interconnection links.\",\"PeriodicalId\":286356,\"journal\":{\"name\":\"2016 Indian Control Conference (ICC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIANCC.2016.7441128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIANCC.2016.7441128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了具有不确定性的大型网络上的非线性系统同步问题。考虑一类具有耗散非线性的特殊非线性系统,这类系统的稳定性可以用绝对稳定性理论工具如正实引理、有界实引理和耗散理论来分析。我们将此分析扩展到网络上的随机设置,其中互连权由给定均值和方差的维纳过程驱动。为了捕获同步状态的稳定性,我们从随机稳定性理论出发,研究了均方稳定性的概念,并基于随机耗散系统理论,给出了一个与网络大小无关的充分条件。我们还计算了网络系统的启发式同步裕度,以表明互联链路中对随机不确定性的容忍度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization of nonlinear systems with dissipative nonlinearity over large-scale stochastic networks
In this paper, we study the synchronization of identical nonlinear systems over large-scale network with uncertainty in the interconnections. We consider a special class of nonlinear systems which have a dissipative nonlinearity and the stability of such systems can be analyzed using absolute stability theory tools like the Positive Real Lemma, Bounded Real Lemma and dissipativity theory. We extend this analysis to the stochastic setting over a network where the interconnection weights are drive by Wiener process with given mean and variance. To capture the stability of the synchronized state, we study the notion of mean square stability from stochastic stability theory and formulate a network size-independent sufficient condition based on the theory of stochastic dissipative systems. We also compute a heuristic margin of synchronization for the networked systems to indicate the tolerance to stochastic uncertainty in interconnection links.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信