Matthew Edwin Weingarten, Theodoros Theodoridis, Aleksandar Prokopec
{"title":"程序间部分逃逸分析的内联效益预测","authors":"Matthew Edwin Weingarten, Theodoros Theodoridis, Aleksandar Prokopec","doi":"10.1145/3563838.3567677","DOIUrl":null,"url":null,"abstract":"Inlining is the primary facilitating mechanism for intraprocedural Partial Escape Analysis (PEA), which allows for the removal of object allocations on a branch-by-branch basis and is critical for performance in object-oriented languages. Prior work used interprocedural Escape Analysis to make inlining decisions, but it discarded control-flow-sensitivity when crossing procedure boundaries, and did not weigh other metrics to model the cost-benefit of inlining, resulting in unpredictable inlining decisions and suboptimal performance. Our work addresses these issues and introduces a novel Interprocedural Partial Escape Analysis algorithm (IPEA) to predict the inlining benefits, and improve the cost-benefit model of an existing optimization-driven inliner. We evaluate the implementation of IPEA in GraalVM Native Image, on industry-standard benchmark suites Dacapo, ScalaBench, and Renaissance. Out of 36 benchmarks with a geometric mean runtime improvement of 1.79%, 6 benchmarks achieve an improvement of over 5% with a geomean of 9.10% and up to 24.62%, while also reducing code size and compilation times compared to existing approaches.","PeriodicalId":262449,"journal":{"name":"Proceedings of the 14th ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inlining-Benefit Prediction with Interprocedural Partial Escape Analysis\",\"authors\":\"Matthew Edwin Weingarten, Theodoros Theodoridis, Aleksandar Prokopec\",\"doi\":\"10.1145/3563838.3567677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inlining is the primary facilitating mechanism for intraprocedural Partial Escape Analysis (PEA), which allows for the removal of object allocations on a branch-by-branch basis and is critical for performance in object-oriented languages. Prior work used interprocedural Escape Analysis to make inlining decisions, but it discarded control-flow-sensitivity when crossing procedure boundaries, and did not weigh other metrics to model the cost-benefit of inlining, resulting in unpredictable inlining decisions and suboptimal performance. Our work addresses these issues and introduces a novel Interprocedural Partial Escape Analysis algorithm (IPEA) to predict the inlining benefits, and improve the cost-benefit model of an existing optimization-driven inliner. We evaluate the implementation of IPEA in GraalVM Native Image, on industry-standard benchmark suites Dacapo, ScalaBench, and Renaissance. Out of 36 benchmarks with a geometric mean runtime improvement of 1.79%, 6 benchmarks achieve an improvement of over 5% with a geomean of 9.10% and up to 24.62%, while also reducing code size and compilation times compared to existing approaches.\",\"PeriodicalId\":262449,\"journal\":{\"name\":\"Proceedings of the 14th ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3563838.3567677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3563838.3567677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inlining-Benefit Prediction with Interprocedural Partial Escape Analysis
Inlining is the primary facilitating mechanism for intraprocedural Partial Escape Analysis (PEA), which allows for the removal of object allocations on a branch-by-branch basis and is critical for performance in object-oriented languages. Prior work used interprocedural Escape Analysis to make inlining decisions, but it discarded control-flow-sensitivity when crossing procedure boundaries, and did not weigh other metrics to model the cost-benefit of inlining, resulting in unpredictable inlining decisions and suboptimal performance. Our work addresses these issues and introduces a novel Interprocedural Partial Escape Analysis algorithm (IPEA) to predict the inlining benefits, and improve the cost-benefit model of an existing optimization-driven inliner. We evaluate the implementation of IPEA in GraalVM Native Image, on industry-standard benchmark suites Dacapo, ScalaBench, and Renaissance. Out of 36 benchmarks with a geometric mean runtime improvement of 1.79%, 6 benchmarks achieve an improvement of over 5% with a geomean of 9.10% and up to 24.62%, while also reducing code size and compilation times compared to existing approaches.