信息检索评价的统计精度

G. Cormack, T. Lynam
{"title":"信息检索评价的统计精度","authors":"G. Cormack, T. Lynam","doi":"10.1145/1148170.1148262","DOIUrl":null,"url":null,"abstract":"We introduce and validate bootstrap techniques to compute confidence intervals that quantify the effect of test-collection variability on average precision (AP) and mean average precision (MAP) IR effectiveness measures. We consider the test collection in IR evaluation to be a representative of a population of materially similar collections, whose documents are drawn from an infinite pool with similar characteristics. Our model accurately predicts the degree of concordance between system results on randomly selected halves of the TREC-6 ad hoc corpus. We advance a framework for statistical evaluation that uses the same general framework to model other sources of chance variation as a source of input for meta-analysis techniques.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":"{\"title\":\"Statistical precision of information retrieval evaluation\",\"authors\":\"G. Cormack, T. Lynam\",\"doi\":\"10.1145/1148170.1148262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and validate bootstrap techniques to compute confidence intervals that quantify the effect of test-collection variability on average precision (AP) and mean average precision (MAP) IR effectiveness measures. We consider the test collection in IR evaluation to be a representative of a population of materially similar collections, whose documents are drawn from an infinite pool with similar characteristics. Our model accurately predicts the degree of concordance between system results on randomly selected halves of the TREC-6 ad hoc corpus. We advance a framework for statistical evaluation that uses the same general framework to model other sources of chance variation as a source of input for meta-analysis techniques.\",\"PeriodicalId\":433366,\"journal\":{\"name\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"108\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1148170.1148262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108

摘要

我们引入并验证了自举技术来计算置信区间,以量化测试集可变性对平均精度(AP)和平均平均精度(MAP) IR有效性度量的影响。我们认为IR评估中的测试集合是材料相似集合的总体代表,这些集合的文档是从具有相似特征的无限池中提取的。我们的模型准确地预测了随机选择的TREC-6临时语料库中系统结果之间的一致性程度。我们提出了一个统计评估框架,该框架使用相同的一般框架来模拟其他机会变化来源,作为元分析技术的输入来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical precision of information retrieval evaluation
We introduce and validate bootstrap techniques to compute confidence intervals that quantify the effect of test-collection variability on average precision (AP) and mean average precision (MAP) IR effectiveness measures. We consider the test collection in IR evaluation to be a representative of a population of materially similar collections, whose documents are drawn from an infinite pool with similar characteristics. Our model accurately predicts the degree of concordance between system results on randomly selected halves of the TREC-6 ad hoc corpus. We advance a framework for statistical evaluation that uses the same general framework to model other sources of chance variation as a source of input for meta-analysis techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信