显性期望与学习偏差:来自共同基金业的证据

Francesco Nicolai, Simona Risteska
{"title":"显性期望与学习偏差:来自共同基金业的证据","authors":"Francesco Nicolai, Simona Risteska","doi":"10.2139/ssrn.3301279","DOIUrl":null,"url":null,"abstract":"By inverting the optimal portfolios of mutual fund managers in a fairly general setting, which allows us to partial out the effect of risk aversion and hedging demands, we provide an estimate of perceived expected excess returns and show that they are significantly affected by experienced returns. The effect of past returns is non-monotone: we provide reduced-form and structural evidence of managers displaying recency and primacy bias. Finally, we estimate an average coefficient of relative risk aversion close to unity.","PeriodicalId":375725,"journal":{"name":"SPGMI: Capital IQ Data (Topic)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealed Expectations and Learning Biases: Evidence from the Mutual Fund Industry\",\"authors\":\"Francesco Nicolai, Simona Risteska\",\"doi\":\"10.2139/ssrn.3301279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By inverting the optimal portfolios of mutual fund managers in a fairly general setting, which allows us to partial out the effect of risk aversion and hedging demands, we provide an estimate of perceived expected excess returns and show that they are significantly affected by experienced returns. The effect of past returns is non-monotone: we provide reduced-form and structural evidence of managers displaying recency and primacy bias. Finally, we estimate an average coefficient of relative risk aversion close to unity.\",\"PeriodicalId\":375725,\"journal\":{\"name\":\"SPGMI: Capital IQ Data (Topic)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPGMI: Capital IQ Data (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3301279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPGMI: Capital IQ Data (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3301279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过在相当一般的环境中反转共同基金经理的最佳投资组合,这使我们能够部分排除风险厌恶和对冲需求的影响,我们提供了感知预期超额回报的估计,并表明它们受到经验回报的显着影响。过去收益的影响是非单调的:我们提供了经理人表现出近因和首要偏见的简化形式和结构证据。最后,我们估计了一个接近于1的平均相对风险厌恶系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revealed Expectations and Learning Biases: Evidence from the Mutual Fund Industry
By inverting the optimal portfolios of mutual fund managers in a fairly general setting, which allows us to partial out the effect of risk aversion and hedging demands, we provide an estimate of perceived expected excess returns and show that they are significantly affected by experienced returns. The effect of past returns is non-monotone: we provide reduced-form and structural evidence of managers displaying recency and primacy bias. Finally, we estimate an average coefficient of relative risk aversion close to unity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信