评估数据量和数据集平衡对使用深度学习方法进行人类活动识别的影响

Haipeng Chen, Fuhai Xiong, Dihong Wu, Lingxiang Zheng, Ao Peng, Xuemin Hong, Biyu Tang, Hai Lu, Haibin Shi, Huiru Zheng
{"title":"评估数据量和数据集平衡对使用深度学习方法进行人类活动识别的影响","authors":"Haipeng Chen, Fuhai Xiong, Dihong Wu, Lingxiang Zheng, Ao Peng, Xuemin Hong, Biyu Tang, Hai Lu, Haibin Shi, Huiru Zheng","doi":"10.1109/BIBM.2017.8217821","DOIUrl":null,"url":null,"abstract":"Over the past decade, deep learning developed rapidly and had significant impact on a variety of application domains. It has been applied to the field of human activity recognition to substitute for well-established analysis techniques that rely on handcrafted feature extraction and classification methods in recent years. However, less attentions have been paid to the influence of training data on recognition accuracy. In this paper, we assessed the influence factors of data volume and data balance in human activity recognition when using deep learning approaches. We evaluated the relationship between data volumes of training dataset and predict accuracy of deep learning algorithms. Given the impact of the data balance between activity categories on the recognition accuracy, we modified the SMOTE algorithm so that it can be applied to human activity recognition. Results show that when the data volume is small (<4M), the recognition accuracy increased quickly with the increase of the quantity of training data. However, the growth trend of recognition accuracy slows down when the data quantity reaches 4 million. Further increase the data volume does not significantly improve the activity recognition performance. So we can conclude that 4 million data volume can ensure a sufficient accuracy for human activity recognition. Meanwhile, the data set balance operation can not only improve the recognition accuracy of minority categories, but also helps to increase the overall accuracy.","PeriodicalId":283543,"journal":{"name":"2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Assessing impacts of data volume and data set balance in using deep learning approach to human activity recognition\",\"authors\":\"Haipeng Chen, Fuhai Xiong, Dihong Wu, Lingxiang Zheng, Ao Peng, Xuemin Hong, Biyu Tang, Hai Lu, Haibin Shi, Huiru Zheng\",\"doi\":\"10.1109/BIBM.2017.8217821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decade, deep learning developed rapidly and had significant impact on a variety of application domains. It has been applied to the field of human activity recognition to substitute for well-established analysis techniques that rely on handcrafted feature extraction and classification methods in recent years. However, less attentions have been paid to the influence of training data on recognition accuracy. In this paper, we assessed the influence factors of data volume and data balance in human activity recognition when using deep learning approaches. We evaluated the relationship between data volumes of training dataset and predict accuracy of deep learning algorithms. Given the impact of the data balance between activity categories on the recognition accuracy, we modified the SMOTE algorithm so that it can be applied to human activity recognition. Results show that when the data volume is small (<4M), the recognition accuracy increased quickly with the increase of the quantity of training data. However, the growth trend of recognition accuracy slows down when the data quantity reaches 4 million. Further increase the data volume does not significantly improve the activity recognition performance. So we can conclude that 4 million data volume can ensure a sufficient accuracy for human activity recognition. Meanwhile, the data set balance operation can not only improve the recognition accuracy of minority categories, but also helps to increase the overall accuracy.\",\"PeriodicalId\":283543,\"journal\":{\"name\":\"2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2017.8217821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2017.8217821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在过去的十年中,深度学习发展迅速,对各种应用领域产生了重大影响。近年来,它已被应用于人类活动识别领域,以取代依赖手工特征提取和分类方法的成熟分析技术。然而,训练数据对识别精度的影响却很少受到关注。在本文中,我们评估了使用深度学习方法在人类活动识别中数据量和数据平衡的影响因素。我们评估了训练数据集的数据量与预测深度学习算法的准确性之间的关系。考虑到活动类别之间的数据平衡对识别精度的影响,我们对SMOTE算法进行了改进,使其能够应用于人体活动识别。结果表明,当数据量较小(<4M)时,随着训练数据量的增加,识别准确率迅速提高。然而,当数据量达到400万时,识别准确率的增长趋势放缓。进一步增加数据量并不能显著提高活动识别性能。因此,我们可以得出结论,400万数据量可以保证足够的人类活动识别精度。同时,数据集平衡操作不仅可以提高少数类别的识别准确率,还有助于提高整体准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing impacts of data volume and data set balance in using deep learning approach to human activity recognition
Over the past decade, deep learning developed rapidly and had significant impact on a variety of application domains. It has been applied to the field of human activity recognition to substitute for well-established analysis techniques that rely on handcrafted feature extraction and classification methods in recent years. However, less attentions have been paid to the influence of training data on recognition accuracy. In this paper, we assessed the influence factors of data volume and data balance in human activity recognition when using deep learning approaches. We evaluated the relationship between data volumes of training dataset and predict accuracy of deep learning algorithms. Given the impact of the data balance between activity categories on the recognition accuracy, we modified the SMOTE algorithm so that it can be applied to human activity recognition. Results show that when the data volume is small (<4M), the recognition accuracy increased quickly with the increase of the quantity of training data. However, the growth trend of recognition accuracy slows down when the data quantity reaches 4 million. Further increase the data volume does not significantly improve the activity recognition performance. So we can conclude that 4 million data volume can ensure a sufficient accuracy for human activity recognition. Meanwhile, the data set balance operation can not only improve the recognition accuracy of minority categories, but also helps to increase the overall accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信