一种新的加权LBG神经脉冲压缩算法

Sudhir Rao, A. Paiva, J. Príncipe
{"title":"一种新的加权LBG神经脉冲压缩算法","authors":"Sudhir Rao, A. Paiva, J. Príncipe","doi":"10.1109/IJCNN.2007.4371245","DOIUrl":null,"url":null,"abstract":"In this paper, we present a weighted Linde-Buzo-Gray algorithm (WLBG) as a powerful and efficient technique for compressing neural spike data. We compare this technique with the recently proposed self-organizing map with dynamic learning (SOM-DL) and the traditional SOM. A significant achievement of WLBG over SOM-DL is a 15 dB increase in the SNR of the spike data apart from having a compression ratio of 150 : 1. Being simple and extremely fast, this algorithm allows real-time implementation on DSP chips opening new opportunities in BMI applications.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"47 18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Novel Weighted LBG Algorithm for Neural Spike Compression\",\"authors\":\"Sudhir Rao, A. Paiva, J. Príncipe\",\"doi\":\"10.1109/IJCNN.2007.4371245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a weighted Linde-Buzo-Gray algorithm (WLBG) as a powerful and efficient technique for compressing neural spike data. We compare this technique with the recently proposed self-organizing map with dynamic learning (SOM-DL) and the traditional SOM. A significant achievement of WLBG over SOM-DL is a 15 dB increase in the SNR of the spike data apart from having a compression ratio of 150 : 1. Being simple and extremely fast, this algorithm allows real-time implementation on DSP chips opening new opportunities in BMI applications.\",\"PeriodicalId\":350091,\"journal\":{\"name\":\"2007 International Joint Conference on Neural Networks\",\"volume\":\"47 18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2007.4371245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一种加权Linde-Buzo-Gray算法(WLBG)作为一种强大而有效的神经脉冲数据压缩技术。我们将这种技术与最近提出的带有动态学习的自组织映射(SOM- dl)和传统的SOM进行了比较。WLBG在SOM-DL上的一个重要成就是,除了具有150:1的压缩比外,尖峰数据的信噪比增加了15 dB。该算法简单且速度极快,可以在DSP芯片上实时实现,为BMI应用开辟了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Weighted LBG Algorithm for Neural Spike Compression
In this paper, we present a weighted Linde-Buzo-Gray algorithm (WLBG) as a powerful and efficient technique for compressing neural spike data. We compare this technique with the recently proposed self-organizing map with dynamic learning (SOM-DL) and the traditional SOM. A significant achievement of WLBG over SOM-DL is a 15 dB increase in the SNR of the spike data apart from having a compression ratio of 150 : 1. Being simple and extremely fast, this algorithm allows real-time implementation on DSP chips opening new opportunities in BMI applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信