物理合成中CAD工具参数自动调整技术综述(特邀论文)

Hao Geng, Tinghuan Chen, Qi Sun, Bei Yu
{"title":"物理合成中CAD工具参数自动调整技术综述(特邀论文)","authors":"Hao Geng, Tinghuan Chen, Qi Sun, Bei Yu","doi":"10.1109/asp-dac52403.2022.9712495","DOIUrl":null,"url":null,"abstract":"As the technology node of integrated circuits rapidly goes beyond 5nm, synthesis-centric modern very large-scale integration (VLSI) design flow is facing ever-increasing design complexity and suffering the pressure of time-to-market. During the past decades, synthesis tools have become progressively sophisticated and offer countless tunable parameters that can significantly influence design quality. Nevertheless, owing to the time-consuming tool evaluation plus a limitation to one possible parameter combination per synthesis run, manually searching for optimal configurations of numerous parameters proves to be elusive. What's worse, tiny perturbations to these parameters can result in very large variations in the Quality-of-Results (QoR). Therefore, automatic tool parameter tuning to reduce human cost and tool evaluation cost is in demand. Machine-learning techniques provide chances to enable the auto-tuning process of tool parameters. In this paper, we will survey the recent pace of progress on advanced parameter auto-tuning flows of physical synthesis tools. We sincerely expect this survey can enlighten the future development of parameter auto-tuning methodologies.","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Techniques for CAD Tool Parameter Auto-tuning in Physical Synthesis: A Survey (Invited Paper)\",\"authors\":\"Hao Geng, Tinghuan Chen, Qi Sun, Bei Yu\",\"doi\":\"10.1109/asp-dac52403.2022.9712495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the technology node of integrated circuits rapidly goes beyond 5nm, synthesis-centric modern very large-scale integration (VLSI) design flow is facing ever-increasing design complexity and suffering the pressure of time-to-market. During the past decades, synthesis tools have become progressively sophisticated and offer countless tunable parameters that can significantly influence design quality. Nevertheless, owing to the time-consuming tool evaluation plus a limitation to one possible parameter combination per synthesis run, manually searching for optimal configurations of numerous parameters proves to be elusive. What's worse, tiny perturbations to these parameters can result in very large variations in the Quality-of-Results (QoR). Therefore, automatic tool parameter tuning to reduce human cost and tool evaluation cost is in demand. Machine-learning techniques provide chances to enable the auto-tuning process of tool parameters. In this paper, we will survey the recent pace of progress on advanced parameter auto-tuning flows of physical synthesis tools. We sincerely expect this survey can enlighten the future development of parameter auto-tuning methodologies.\",\"PeriodicalId\":239260,\"journal\":{\"name\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/asp-dac52403.2022.9712495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asp-dac52403.2022.9712495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着集成电路的技术节点迅速超越5nm,以合成为中心的现代超大规模集成电路(VLSI)设计流程面临着日益增加的设计复杂性和上市时间的压力。在过去的几十年里,合成工具已经变得越来越复杂,并提供了无数的可调参数,可以显著影响设计质量。然而,由于耗时的工具评估以及每次合成运行只能有一个可能的参数组合,手动搜索众多参数的最佳配置被证明是难以捉摸的。更糟糕的是,这些参数的微小扰动可能导致结果质量(QoR)的非常大的变化。因此,需要自动调整刀具参数以降低人力成本和刀具评估成本。机器学习技术为实现工具参数的自动调整过程提供了机会。在本文中,我们将调查在物理合成工具的先进参数自动调谐流的最新进展。我们真诚地希望这一调查能够对参数自整定方法的未来发展有所启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Techniques for CAD Tool Parameter Auto-tuning in Physical Synthesis: A Survey (Invited Paper)
As the technology node of integrated circuits rapidly goes beyond 5nm, synthesis-centric modern very large-scale integration (VLSI) design flow is facing ever-increasing design complexity and suffering the pressure of time-to-market. During the past decades, synthesis tools have become progressively sophisticated and offer countless tunable parameters that can significantly influence design quality. Nevertheless, owing to the time-consuming tool evaluation plus a limitation to one possible parameter combination per synthesis run, manually searching for optimal configurations of numerous parameters proves to be elusive. What's worse, tiny perturbations to these parameters can result in very large variations in the Quality-of-Results (QoR). Therefore, automatic tool parameter tuning to reduce human cost and tool evaluation cost is in demand. Machine-learning techniques provide chances to enable the auto-tuning process of tool parameters. In this paper, we will survey the recent pace of progress on advanced parameter auto-tuning flows of physical synthesis tools. We sincerely expect this survey can enlighten the future development of parameter auto-tuning methodologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信