实现多类分类,寻找预测恶意url的最佳机器学习模型

R. J. Samuel Raj, S. Anantha Babu, Helen Josephine V L, Varalatchoumy M, C. Kathirvel
{"title":"实现多类分类,寻找预测恶意url的最佳机器学习模型","authors":"R. J. Samuel Raj, S. Anantha Babu, Helen Josephine V L, Varalatchoumy M, C. Kathirvel","doi":"10.1109/ICCMC53470.2022.9754005","DOIUrl":null,"url":null,"abstract":"Web attacks such as spamming, phishing, and malware are common on the Internet. When an unsuspecting user hits the URL, the user becomes a victim of the assaults, which have significant consequences for commercial, finance, and social networking sites. Lexical features, host-based features, content-based features, DNS features, popularity features, and other discriminative features are used to generate a decent feature representation of the URL. URL dataset is collected from ISCX-URL. The goal of this research is to create a multi-class classification model that can categorise URLs as a possible threat to system security by combining several criteria to get the optimal Machine Learning Model.","PeriodicalId":345346,"journal":{"name":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementing Multiclass Classification to find the Optimal Machine Learning Model for Forecasting Malicious URLs\",\"authors\":\"R. J. Samuel Raj, S. Anantha Babu, Helen Josephine V L, Varalatchoumy M, C. Kathirvel\",\"doi\":\"10.1109/ICCMC53470.2022.9754005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web attacks such as spamming, phishing, and malware are common on the Internet. When an unsuspecting user hits the URL, the user becomes a victim of the assaults, which have significant consequences for commercial, finance, and social networking sites. Lexical features, host-based features, content-based features, DNS features, popularity features, and other discriminative features are used to generate a decent feature representation of the URL. URL dataset is collected from ISCX-URL. The goal of this research is to create a multi-class classification model that can categorise URLs as a possible threat to system security by combining several criteria to get the optimal Machine Learning Model.\",\"PeriodicalId\":345346,\"journal\":{\"name\":\"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMC53470.2022.9754005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC53470.2022.9754005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

垃圾邮件、网络钓鱼和恶意软件等网络攻击在互联网上很常见。当不知情的用户点击该URL时,该用户将成为攻击的受害者,这将对商业、金融和社会网络站点造成严重后果。词法特征、基于主机的特征、基于内容的特征、DNS特征、流行度特征和其他判别性特征用于生成URL的合适特征表示。URL数据集从ISCX-URL中收集。本研究的目标是创建一个多类分类模型,通过结合几个标准来获得最佳机器学习模型,该模型可以将url分类为可能对系统安全构成威胁的url。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementing Multiclass Classification to find the Optimal Machine Learning Model for Forecasting Malicious URLs
Web attacks such as spamming, phishing, and malware are common on the Internet. When an unsuspecting user hits the URL, the user becomes a victim of the assaults, which have significant consequences for commercial, finance, and social networking sites. Lexical features, host-based features, content-based features, DNS features, popularity features, and other discriminative features are used to generate a decent feature representation of the URL. URL dataset is collected from ISCX-URL. The goal of this research is to create a multi-class classification model that can categorise URLs as a possible threat to system security by combining several criteria to get the optimal Machine Learning Model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信