遗忘线性函数求值的多二次环与Walsh-Hadamard变换

A. Pedrouzo-Ulloa, J. Troncoso-Pastoriza, Nicolas Gama, Mariya Georgieva, F. Pérez-González
{"title":"遗忘线性函数求值的多二次环与Walsh-Hadamard变换","authors":"A. Pedrouzo-Ulloa, J. Troncoso-Pastoriza, Nicolas Gama, Mariya Georgieva, F. Pérez-González","doi":"10.1109/WIFS49906.2020.9360891","DOIUrl":null,"url":null,"abstract":"The Ring Learning with Errors (RLWE) problem has become one of the most widely used cryptographic assumptions for the construction of modern cryptographic primitives. Most of these solutions make use of power-of-two cyclotomic rings mainly due to its simplicity and efficiency. This work explores the possibility of substituting them for multiquadratic rings and shows that the latter can bring about important efficiency improvements in reducing the cost of the underlying polynomial operations. We introduce a generalized version of the fast Walsh-Hadamard Transform which enables faster degree-n polynomial multiplications by reducing the required elemental products by a factor of $\\mathcal{O}(\\log n)$. Finally, we showcase how these rings find immediate application in the implementation of OLE (Oblivious Linear Function Evaluation) primitives, which are one of the main building blocks used inside Secure Multiparty Computation (MPC) protocols.","PeriodicalId":354881,"journal":{"name":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiquadratic Rings and Walsh-Hadamard Transforms for Oblivious Linear Function Evaluation\",\"authors\":\"A. Pedrouzo-Ulloa, J. Troncoso-Pastoriza, Nicolas Gama, Mariya Georgieva, F. Pérez-González\",\"doi\":\"10.1109/WIFS49906.2020.9360891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ring Learning with Errors (RLWE) problem has become one of the most widely used cryptographic assumptions for the construction of modern cryptographic primitives. Most of these solutions make use of power-of-two cyclotomic rings mainly due to its simplicity and efficiency. This work explores the possibility of substituting them for multiquadratic rings and shows that the latter can bring about important efficiency improvements in reducing the cost of the underlying polynomial operations. We introduce a generalized version of the fast Walsh-Hadamard Transform which enables faster degree-n polynomial multiplications by reducing the required elemental products by a factor of $\\\\mathcal{O}(\\\\log n)$. Finally, we showcase how these rings find immediate application in the implementation of OLE (Oblivious Linear Function Evaluation) primitives, which are one of the main building blocks used inside Secure Multiparty Computation (MPC) protocols.\",\"PeriodicalId\":354881,\"journal\":{\"name\":\"2020 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"304 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS49906.2020.9360891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS49906.2020.9360891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

带误差环学习(RLWE)问题已成为构造现代密码原语时使用最广泛的密码学假设之一。大多数这些解决方案主要是由于其简单和高效而使用二次幂环。这项工作探索了用它们代替多二次环的可能性,并表明后者可以在降低底层多项式操作的成本方面带来重要的效率提高。我们引入了快速Walsh-Hadamard变换的一个广义版本,它通过将所需的元素乘积减少一个因子$\mathcal{O}(\log n)$来实现更快的n次多项式乘法。最后,我们展示了这些环如何在OLE(遗忘线性函数求值)原语的实现中得到直接应用,OLE原语是安全多方计算(MPC)协议中使用的主要构建块之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiquadratic Rings and Walsh-Hadamard Transforms for Oblivious Linear Function Evaluation
The Ring Learning with Errors (RLWE) problem has become one of the most widely used cryptographic assumptions for the construction of modern cryptographic primitives. Most of these solutions make use of power-of-two cyclotomic rings mainly due to its simplicity and efficiency. This work explores the possibility of substituting them for multiquadratic rings and shows that the latter can bring about important efficiency improvements in reducing the cost of the underlying polynomial operations. We introduce a generalized version of the fast Walsh-Hadamard Transform which enables faster degree-n polynomial multiplications by reducing the required elemental products by a factor of $\mathcal{O}(\log n)$. Finally, we showcase how these rings find immediate application in the implementation of OLE (Oblivious Linear Function Evaluation) primitives, which are one of the main building blocks used inside Secure Multiparty Computation (MPC) protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信