基于随机计算的dnn内存计算(SC CiM)体系结构及非易失性存储器容错和缺陷容错的分层评估

Takuto Nishimura, Yuya Ichikawa, Akira Goda, Naoko Misawa, C. Matsui, Ken Takeuchi
{"title":"基于随机计算的dnn内存计算(SC CiM)体系结构及非易失性存储器容错和缺陷容错的分层评估","authors":"Takuto Nishimura, Yuya Ichikawa, Akira Goda, Naoko Misawa, C. Matsui, Ken Takeuchi","doi":"10.1109/IMW56887.2023.10145982","DOIUrl":null,"url":null,"abstract":"A Stochastic Computing-based Computation-inMemory architecture (SC CiM) with non-volatile memory (NVM) stochastic weights has been proposed. Both of the input and weight values are converted into stochastic bit streams. The multiply-and-accumulate (MAC) operation of the SC multiplication is performed in memory. The computational accuracy is characterized for Resnet-56 and CIFAR-10, with the bit error rate (BER) range from 1$0^{-4}$ to 1$0^{-2}$ representing the actual NVM characteristics. The effects of NVM BER are analyzed hierarchically at all computational layers (bit streams, MAC calculation and DNN inference) and compared both qualitatively and quantitatively with the conventional CiM. The results show the excellent robustness of the proposed SC CiM architecture in the wide range of BER. The tolerance to the manufacturing defects is even better than that of the conventional CiM. Furthermore, the desired weight distributions are discussed by exploiting the unique behaviors against NVM BER in the SC CiM.","PeriodicalId":153429,"journal":{"name":"2023 IEEE International Memory Workshop (IMW)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Computing-based Computation-in-Memory (SC CiM) Architecture for DNNs and Hierarchical Evaluations of Non-volatile Memory Error and Defect Tolerance\",\"authors\":\"Takuto Nishimura, Yuya Ichikawa, Akira Goda, Naoko Misawa, C. Matsui, Ken Takeuchi\",\"doi\":\"10.1109/IMW56887.2023.10145982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Stochastic Computing-based Computation-inMemory architecture (SC CiM) with non-volatile memory (NVM) stochastic weights has been proposed. Both of the input and weight values are converted into stochastic bit streams. The multiply-and-accumulate (MAC) operation of the SC multiplication is performed in memory. The computational accuracy is characterized for Resnet-56 and CIFAR-10, with the bit error rate (BER) range from 1$0^{-4}$ to 1$0^{-2}$ representing the actual NVM characteristics. The effects of NVM BER are analyzed hierarchically at all computational layers (bit streams, MAC calculation and DNN inference) and compared both qualitatively and quantitatively with the conventional CiM. The results show the excellent robustness of the proposed SC CiM architecture in the wide range of BER. The tolerance to the manufacturing defects is even better than that of the conventional CiM. Furthermore, the desired weight distributions are discussed by exploiting the unique behaviors against NVM BER in the SC CiM.\",\"PeriodicalId\":153429,\"journal\":{\"name\":\"2023 IEEE International Memory Workshop (IMW)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Memory Workshop (IMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMW56887.2023.10145982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW56887.2023.10145982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于随机计算的非易失性存储器(NVM)随机权值的内存计算架构(SC CiM)。输入值和权值都被转换成随机比特流。SC乘法的乘法累加(MAC)操作在内存中执行。计算精度表征为Resnet-56和CIFAR-10,误码率(BER)范围为1$0^{-4}$到1$0^{-2}$,代表实际的NVM特性。在所有计算层(比特流、MAC计算和DNN推理)上对NVM误码率的影响进行了分层分析,并与传统的CiM进行了定性和定量比较。结果表明,所提出的SC - CiM结构在较宽的误码率范围内具有良好的鲁棒性。对制造缺陷的容忍度甚至优于传统CiM。此外,通过利用SC CiM中针对NVM BER的独特行为,讨论了期望的权重分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Computing-based Computation-in-Memory (SC CiM) Architecture for DNNs and Hierarchical Evaluations of Non-volatile Memory Error and Defect Tolerance
A Stochastic Computing-based Computation-inMemory architecture (SC CiM) with non-volatile memory (NVM) stochastic weights has been proposed. Both of the input and weight values are converted into stochastic bit streams. The multiply-and-accumulate (MAC) operation of the SC multiplication is performed in memory. The computational accuracy is characterized for Resnet-56 and CIFAR-10, with the bit error rate (BER) range from 1$0^{-4}$ to 1$0^{-2}$ representing the actual NVM characteristics. The effects of NVM BER are analyzed hierarchically at all computational layers (bit streams, MAC calculation and DNN inference) and compared both qualitatively and quantitatively with the conventional CiM. The results show the excellent robustness of the proposed SC CiM architecture in the wide range of BER. The tolerance to the manufacturing defects is even better than that of the conventional CiM. Furthermore, the desired weight distributions are discussed by exploiting the unique behaviors against NVM BER in the SC CiM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信