用拉格朗日松弛法设计GMPLS网络的最优路径

T. Fukumoto, N. Komoda
{"title":"用拉格朗日松弛法设计GMPLS网络的最优路径","authors":"T. Fukumoto, N. Komoda","doi":"10.1109/SCIS.2007.367697","DOIUrl":null,"url":null,"abstract":"We describe an optimal path design for a GMPLS network that uses the Lagrangian relaxation method, which can estimate the lower bounds of the solution to a problem. This feature helps the designer of the problem to take the accuracy of the solution obtained by the calculation into consideration when he makes a decision to assign the solution to a real network in critical situations. A formulation of the problem and how to solve it using the Lagrangian relaxation method is described, and the results obtained by a prototype and considerations are shown in this paper.","PeriodicalId":184726,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Scheduling","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Paths Design for a GMPLS Network using the Lagrangian Relaxation Method\",\"authors\":\"T. Fukumoto, N. Komoda\",\"doi\":\"10.1109/SCIS.2007.367697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an optimal path design for a GMPLS network that uses the Lagrangian relaxation method, which can estimate the lower bounds of the solution to a problem. This feature helps the designer of the problem to take the accuracy of the solution obtained by the calculation into consideration when he makes a decision to assign the solution to a real network in critical situations. A formulation of the problem and how to solve it using the Lagrangian relaxation method is described, and the results obtained by a prototype and considerations are shown in this paper.\",\"PeriodicalId\":184726,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence in Scheduling\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence in Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCIS.2007.367697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCIS.2007.367697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种GMPLS网络的最优路径设计方法,该方法使用拉格朗日松弛法来估计问题解的下界。这一特性有助于问题设计者在危急情况下决定将解分配给真实网络时,考虑计算得到的解的准确性。本文描述了该问题的表述和如何用拉格朗日松弛法求解,并给出了用原型法得到的结果和注意事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Paths Design for a GMPLS Network using the Lagrangian Relaxation Method
We describe an optimal path design for a GMPLS network that uses the Lagrangian relaxation method, which can estimate the lower bounds of the solution to a problem. This feature helps the designer of the problem to take the accuracy of the solution obtained by the calculation into consideration when he makes a decision to assign the solution to a real network in critical situations. A formulation of the problem and how to solve it using the Lagrangian relaxation method is described, and the results obtained by a prototype and considerations are shown in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信