复傅立叶空间中的原型与矩阵相关学习

M. Straat, M. Kaden, M. Gay, T. Villmann, A. Lampe, U. Seiffert, Michael Biehl, F. Melchert
{"title":"复傅立叶空间中的原型与矩阵相关学习","authors":"M. Straat, M. Kaden, M. Gay, T. Villmann, A. Lampe, U. Seiffert, Michael Biehl, F. Melchert","doi":"10.1109/WSOM.2017.8020019","DOIUrl":null,"url":null,"abstract":"In this contribution, we consider the classification of time-series and similar functional data which can be represented in complex Fourier coefficient space. We apply versions of Learning Vector Quantization (LVQ) which are suitable for complex-valued data, based on the so-called Wirtinger calculus. It makes possible the formulation of gradient based update rules in the framework of cost-function based Generalized Matrix Relevance LVQ (GMLVQ). Alternatively, we consider the concatenation of real and imaginary parts of Fourier coefficients in a real-valued feature vector and the classification of time domain representations by means of conventional GMLVQ.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prototypes and matrix relevance learning in complex fourier space\",\"authors\":\"M. Straat, M. Kaden, M. Gay, T. Villmann, A. Lampe, U. Seiffert, Michael Biehl, F. Melchert\",\"doi\":\"10.1109/WSOM.2017.8020019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, we consider the classification of time-series and similar functional data which can be represented in complex Fourier coefficient space. We apply versions of Learning Vector Quantization (LVQ) which are suitable for complex-valued data, based on the so-called Wirtinger calculus. It makes possible the formulation of gradient based update rules in the framework of cost-function based Generalized Matrix Relevance LVQ (GMLVQ). Alternatively, we consider the concatenation of real and imaginary parts of Fourier coefficients in a real-valued feature vector and the classification of time domain representations by means of conventional GMLVQ.\",\"PeriodicalId\":130086,\"journal\":{\"name\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSOM.2017.8020019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这篇贡献中,我们考虑了可以在复傅立叶系数空间中表示的时间序列和类似函数数据的分类。我们基于所谓的Wirtinger微积分,应用了适合于复值数据的学习向量量化(LVQ)版本。这使得在基于成本函数的广义矩阵关联LVQ (GMLVQ)框架下建立基于梯度的更新规则成为可能。或者,我们考虑在实值特征向量中傅里叶系数的实部和虚部的串联,并通过传统的GMLVQ方法对时域表示进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prototypes and matrix relevance learning in complex fourier space
In this contribution, we consider the classification of time-series and similar functional data which can be represented in complex Fourier coefficient space. We apply versions of Learning Vector Quantization (LVQ) which are suitable for complex-valued data, based on the so-called Wirtinger calculus. It makes possible the formulation of gradient based update rules in the framework of cost-function based Generalized Matrix Relevance LVQ (GMLVQ). Alternatively, we consider the concatenation of real and imaginary parts of Fourier coefficients in a real-valued feature vector and the classification of time domain representations by means of conventional GMLVQ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信