农业和山区植被的SAR多频观测

S. Paloscia, G. Fontanelli, A. Lapini, E. Santi, S. Pettinato, C. Notarnicola, Eugenia Chiarito, G. Cuozzo, D. Tapete, F. Cigna
{"title":"农业和山区植被的SAR多频观测","authors":"S. Paloscia, G. Fontanelli, A. Lapini, E. Santi, S. Pettinato, C. Notarnicola, Eugenia Chiarito, G. Cuozzo, D. Tapete, F. Cigna","doi":"10.23919/URSIGASS49373.2020.9232372","DOIUrl":null,"url":null,"abstract":"In this paper, the potential of space-borne Synthetic Aperture Radar (SAR) sensors combined with optical ones has been exploited by analyzing datasets collected on two vegetated areas in Italy, by using COSMO-SkyMed X-band and Sentinel-1 C-band SAR, PRISMA hyperspectral and Sentinel-2 multispectral imagery, combined with field measurements acquired with spectroradiometers. On the mountain area in Alto Adige, a biomass estimation approach was developed by combining Sentinel-1 SAR and spectroradiometer hyperspectral data. On Val d’Elsa area in Tuscany, COSMO-SkyMed StripMap HIMAGE and Sentinel-1 Interferometric Wide swath mode SAR data have been integrated with Sentinel-2 imagery for improving the classification of agricultural crops. Convolutional Neural Networks (CNN) have been used for the classification of agricultural areas using these three sensors.","PeriodicalId":438881,"journal":{"name":"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAR multi-frequency observations of vegetation in agricultural and mountain areas\",\"authors\":\"S. Paloscia, G. Fontanelli, A. Lapini, E. Santi, S. Pettinato, C. Notarnicola, Eugenia Chiarito, G. Cuozzo, D. Tapete, F. Cigna\",\"doi\":\"10.23919/URSIGASS49373.2020.9232372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the potential of space-borne Synthetic Aperture Radar (SAR) sensors combined with optical ones has been exploited by analyzing datasets collected on two vegetated areas in Italy, by using COSMO-SkyMed X-band and Sentinel-1 C-band SAR, PRISMA hyperspectral and Sentinel-2 multispectral imagery, combined with field measurements acquired with spectroradiometers. On the mountain area in Alto Adige, a biomass estimation approach was developed by combining Sentinel-1 SAR and spectroradiometer hyperspectral data. On Val d’Elsa area in Tuscany, COSMO-SkyMed StripMap HIMAGE and Sentinel-1 Interferometric Wide swath mode SAR data have been integrated with Sentinel-2 imagery for improving the classification of agricultural crops. Convolutional Neural Networks (CNN) have been used for the classification of agricultural areas using these three sensors.\",\"PeriodicalId\":438881,\"journal\":{\"name\":\"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/URSIGASS49373.2020.9232372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS49373.2020.9232372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用COSMO-SkyMed x波段和Sentinel-1 c波段合成孔径雷达(SAR)、PRISMA高光谱和Sentinel-2多光谱图像,结合光谱辐射计获得的野外测量数据,对意大利两个植被区收集的数据集进行了分析,挖掘了星载合成孔径雷达(SAR)传感器与光学传感器相结合的潜力。在上阿迪热山区,将Sentinel-1 SAR数据与光谱辐射计高光谱数据相结合,建立了生物量估算方法。在托斯卡纳的Val d 'Elsa地区,cosmos - skymed StripMap HIMAGE和Sentinel-1干涉宽幅模式SAR数据与Sentinel-2图像相结合,以改进农作物分类。卷积神经网络(CNN)已被用于使用这三种传感器对农业区域进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAR multi-frequency observations of vegetation in agricultural and mountain areas
In this paper, the potential of space-borne Synthetic Aperture Radar (SAR) sensors combined with optical ones has been exploited by analyzing datasets collected on two vegetated areas in Italy, by using COSMO-SkyMed X-band and Sentinel-1 C-band SAR, PRISMA hyperspectral and Sentinel-2 multispectral imagery, combined with field measurements acquired with spectroradiometers. On the mountain area in Alto Adige, a biomass estimation approach was developed by combining Sentinel-1 SAR and spectroradiometer hyperspectral data. On Val d’Elsa area in Tuscany, COSMO-SkyMed StripMap HIMAGE and Sentinel-1 Interferometric Wide swath mode SAR data have been integrated with Sentinel-2 imagery for improving the classification of agricultural crops. Convolutional Neural Networks (CNN) have been used for the classification of agricultural areas using these three sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信