全球导航卫星系统数据中兴趣点的自动识别:时空方法

K. Tran, S. Barbeau, M. Labrador
{"title":"全球导航卫星系统数据中兴趣点的自动识别:时空方法","authors":"K. Tran, S. Barbeau, M. Labrador","doi":"10.1145/2534303.2534304","DOIUrl":null,"url":null,"abstract":"Past research in travel surveys has shown that a GPS mobile phone-based survey is a useful tool for collecting information about individuals. While a passive travel survey collection is preferred to an active travel survey method, passive collection remains a challenge due to a lack of high accuracy algorithms to automatically identify trip starts and trip ends. This paper presents Automatic Spatial Temporal Identification of Points of Interest (ASTIPI), an unsupervised spatial temporal algorithm to identify POIs. ASTIPI utilizes the temporal and spatial properties of the dataset to obtain a high accuracy of POI identification, even on a reduced GPS dataset that uses techniques to conserve battery life on mobile devices. While reducing outliers within POIs, ASTIPI also has a linear running time and maintains the temporal orders of the location data so that arrival and departure information can be easily extracted and thus, users' trips can be quickly identified. Using real data from mobile devices, evaluations of ASTIPI and other existing algorithms are performed, showing that ASTIPI obtains the highest accuracy of POI identification with an average accuracy of 88% when performing on full datasets generated using the GPS Auto-Sleep module and an average accuracy of 59% when performing on reduced datasets generated using both the GPS Auto-Sleep module and the Critical Points algorithm.","PeriodicalId":190366,"journal":{"name":"International Workshop on GeoStreaming","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automatic identification of points of interest in global navigation satellite system data: a spatial temporal approach\",\"authors\":\"K. Tran, S. Barbeau, M. Labrador\",\"doi\":\"10.1145/2534303.2534304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Past research in travel surveys has shown that a GPS mobile phone-based survey is a useful tool for collecting information about individuals. While a passive travel survey collection is preferred to an active travel survey method, passive collection remains a challenge due to a lack of high accuracy algorithms to automatically identify trip starts and trip ends. This paper presents Automatic Spatial Temporal Identification of Points of Interest (ASTIPI), an unsupervised spatial temporal algorithm to identify POIs. ASTIPI utilizes the temporal and spatial properties of the dataset to obtain a high accuracy of POI identification, even on a reduced GPS dataset that uses techniques to conserve battery life on mobile devices. While reducing outliers within POIs, ASTIPI also has a linear running time and maintains the temporal orders of the location data so that arrival and departure information can be easily extracted and thus, users' trips can be quickly identified. Using real data from mobile devices, evaluations of ASTIPI and other existing algorithms are performed, showing that ASTIPI obtains the highest accuracy of POI identification with an average accuracy of 88% when performing on full datasets generated using the GPS Auto-Sleep module and an average accuracy of 59% when performing on reduced datasets generated using both the GPS Auto-Sleep module and the Critical Points algorithm.\",\"PeriodicalId\":190366,\"journal\":{\"name\":\"International Workshop on GeoStreaming\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on GeoStreaming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2534303.2534304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on GeoStreaming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534303.2534304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

过去对旅行调查的研究表明,基于GPS手机的调查是收集个人信息的有用工具。虽然被动旅行调查收集比主动旅行调查方法更受欢迎,但由于缺乏高精度的自动识别旅行开始和结束的算法,被动收集仍然是一个挑战。提出了一种无监督的感兴趣点时空自动识别算法(ASTIPI)。ASTIPI利用数据集的时间和空间属性来获得高精度的POI识别,即使是在减少的GPS数据集上,也使用了节省移动设备电池寿命的技术。在减少poi内的异常值的同时,ASTIPI还具有线性运行时间,并保持位置数据的时间顺序,从而可以轻松提取到达和离开信息,从而快速识别用户的行程。利用来自移动设备的真实数据,对ASTIPI和其他现有算法进行了评估,结果表明,在使用GPS Auto-Sleep模块生成的完整数据集上,ASTIPI的POI识别精度最高,平均准确率为88%,在使用GPS Auto-Sleep模块和临界点算法生成的简化数据集上,ASTIPI的平均准确率为59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic identification of points of interest in global navigation satellite system data: a spatial temporal approach
Past research in travel surveys has shown that a GPS mobile phone-based survey is a useful tool for collecting information about individuals. While a passive travel survey collection is preferred to an active travel survey method, passive collection remains a challenge due to a lack of high accuracy algorithms to automatically identify trip starts and trip ends. This paper presents Automatic Spatial Temporal Identification of Points of Interest (ASTIPI), an unsupervised spatial temporal algorithm to identify POIs. ASTIPI utilizes the temporal and spatial properties of the dataset to obtain a high accuracy of POI identification, even on a reduced GPS dataset that uses techniques to conserve battery life on mobile devices. While reducing outliers within POIs, ASTIPI also has a linear running time and maintains the temporal orders of the location data so that arrival and departure information can be easily extracted and thus, users' trips can be quickly identified. Using real data from mobile devices, evaluations of ASTIPI and other existing algorithms are performed, showing that ASTIPI obtains the highest accuracy of POI identification with an average accuracy of 88% when performing on full datasets generated using the GPS Auto-Sleep module and an average accuracy of 59% when performing on reduced datasets generated using both the GPS Auto-Sleep module and the Critical Points algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信