$\mathbb{Z}_k$-代码顶点算子代数

T. Arakawa, H. Yamada, H. Yamauchi
{"title":"$\\mathbb{Z}_k$-代码顶点算子代数","authors":"T. Arakawa, H. Yamada, H. Yamauchi","doi":"10.2969/jmsj/83278327","DOIUrl":null,"url":null,"abstract":"We introduce a simple, self-dual, rational, and $C_2$-cofinite vertex operator algebra of CFT-type associated with a $\\mathbb{Z}_k$-code for $k \\ge 2$ based on the $\\mathbb{Z}_k$-symmetry among the simple current modules for the parafermion vertex operator algebra $K(\\mathfrak{sl}_2,k)$. We show that it is naturally realized as the commutant of a certain subalgebra in a lattice vertex operator algebra. Furthermore, we construct all the irreducible modules inside a module for the lattice vertex operator algebra.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"$\\\\mathbb{Z}_k$-code vertex operator algebras\",\"authors\":\"T. Arakawa, H. Yamada, H. Yamauchi\",\"doi\":\"10.2969/jmsj/83278327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a simple, self-dual, rational, and $C_2$-cofinite vertex operator algebra of CFT-type associated with a $\\\\mathbb{Z}_k$-code for $k \\\\ge 2$ based on the $\\\\mathbb{Z}_k$-symmetry among the simple current modules for the parafermion vertex operator algebra $K(\\\\mathfrak{sl}_2,k)$. We show that it is naturally realized as the commutant of a certain subalgebra in a lattice vertex operator algebra. Furthermore, we construct all the irreducible modules inside a module for the lattice vertex operator algebra.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/83278327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2969/jmsj/83278327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于对偶子顶点算子代数$k (\ mathfrk {sl}_2,k)$的简单电流模之间的$ mathbb{Z}_k$-对称性,给出了一个与$k \ ge2 $的$ mathbb{Z}_k$-代码相关联的$ cft型的简单自对偶有理$C_2$-有限顶点算子代数。我们证明了它可以很自然地实现为格顶点算子代数中某子代数的交换子。进一步,我们构造了格顶点算子代数的模内的所有不可约模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\mathbb{Z}_k$-code vertex operator algebras
We introduce a simple, self-dual, rational, and $C_2$-cofinite vertex operator algebra of CFT-type associated with a $\mathbb{Z}_k$-code for $k \ge 2$ based on the $\mathbb{Z}_k$-symmetry among the simple current modules for the parafermion vertex operator algebra $K(\mathfrak{sl}_2,k)$. We show that it is naturally realized as the commutant of a certain subalgebra in a lattice vertex operator algebra. Furthermore, we construct all the irreducible modules inside a module for the lattice vertex operator algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信