基于SnTe/Si异质结构的宽带光伏探测器

Liyuan Song, L. Tang, Qun Hao, Chunli Yang, K. Teng, Haipeng Wang, Junbin Li
{"title":"基于SnTe/Si异质结构的宽带光伏探测器","authors":"Liyuan Song, L. Tang, Qun Hao, Chunli Yang, K. Teng, Haipeng Wang, Junbin Li","doi":"10.1117/12.2665266","DOIUrl":null,"url":null,"abstract":"SnTe is a new two-dimensional (2D) material, which has many merits, such as the bandgap of SnTe film can be adjusted by changing the film thickness hence its photoelectric properties can be regulated. SnTe belongs to topological crystal insulator (TCI) and has gapless topological surface states as well as exhibiting high carrier mobility at room temperature. SnTe has a narrow band gap and has potential for wavelength extension in the development of novel infrared photodetectors. Si is a traditional semiconductor material and has been widely used in the preparation of various semiconductor devices due to its numerous merits, such as low-cost and well-established preparation methodology. However, the detection wavelength of Si photoelectric detector is limited by its relatively large bandgap (1.12 eV). Recently, some progress has been made in fabricating photovoltaic detectors consisting of new 2D materials and Si. In this study, an efficient and low-cost magnetron sputtering method was used to prepare SnTe nanofilm on Si substrate. A photovoltaic detector based on the vertical heterostructure of SnTe/Si was fabricated using Al as electrode material. J-V characterization of the SnTe/Si heterostructure showed that the device exhibited good diode and photovoltaic characteristics under the illumination of various LED light sources with wavelength between 400 and 1450 nm, and its photocurrent was larger than the dark current. Moreover, under 850 nm illumination, the SnTe/Si device has a high responsivity (R) of 260 mA/W and detectivity (D*) of 3.36×1010 cmHz1/2W-1. Therefore, the device demonstrated potential application in the field of broadband photoelectric detection.","PeriodicalId":258680,"journal":{"name":"Earth and Space From Infrared to Terahertz (ESIT 2022)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband photovoltaic detector based on SnTe/Si heterostructure\",\"authors\":\"Liyuan Song, L. Tang, Qun Hao, Chunli Yang, K. Teng, Haipeng Wang, Junbin Li\",\"doi\":\"10.1117/12.2665266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SnTe is a new two-dimensional (2D) material, which has many merits, such as the bandgap of SnTe film can be adjusted by changing the film thickness hence its photoelectric properties can be regulated. SnTe belongs to topological crystal insulator (TCI) and has gapless topological surface states as well as exhibiting high carrier mobility at room temperature. SnTe has a narrow band gap and has potential for wavelength extension in the development of novel infrared photodetectors. Si is a traditional semiconductor material and has been widely used in the preparation of various semiconductor devices due to its numerous merits, such as low-cost and well-established preparation methodology. However, the detection wavelength of Si photoelectric detector is limited by its relatively large bandgap (1.12 eV). Recently, some progress has been made in fabricating photovoltaic detectors consisting of new 2D materials and Si. In this study, an efficient and low-cost magnetron sputtering method was used to prepare SnTe nanofilm on Si substrate. A photovoltaic detector based on the vertical heterostructure of SnTe/Si was fabricated using Al as electrode material. J-V characterization of the SnTe/Si heterostructure showed that the device exhibited good diode and photovoltaic characteristics under the illumination of various LED light sources with wavelength between 400 and 1450 nm, and its photocurrent was larger than the dark current. Moreover, under 850 nm illumination, the SnTe/Si device has a high responsivity (R) of 260 mA/W and detectivity (D*) of 3.36×1010 cmHz1/2W-1. Therefore, the device demonstrated potential application in the field of broadband photoelectric detection.\",\"PeriodicalId\":258680,\"journal\":{\"name\":\"Earth and Space From Infrared to Terahertz (ESIT 2022)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space From Infrared to Terahertz (ESIT 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2665266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space From Infrared to Terahertz (ESIT 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2665266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

SnTe是一种新型的二维(2D)材料,具有许多优点,如可以通过改变薄膜厚度来调节SnTe薄膜的带隙,从而可以调节其光电性能。SnTe属于拓扑晶体绝缘体(TCI),具有无间隙的拓扑表面态,在室温下具有较高的载流子迁移率。SnTe具有窄带隙,在新型红外探测器的开发中具有波长扩展的潜力。硅是一种传统的半导体材料,由于其成本低、制备方法完善等优点,已广泛应用于各种半导体器件的制备中。然而,硅光电探测器的探测波长受限于其较大的带隙(1.12 eV)。近年来,利用新型二维材料和硅材料制备光伏探测器取得了一些进展。本研究采用一种高效、低成本的磁控溅射方法在Si衬底上制备了SnTe纳米膜。以铝为电极材料,制备了基于SnTe/Si垂直异质结构的光伏探测器。对SnTe/Si异质结构的J-V表征表明,该器件在波长为400 ~ 1450 nm的多种LED光源照射下具有良好的二极管和光伏特性,且光电流大于暗电流。此外,在850 nm照明下,SnTe/Si器件具有260 mA/W的高响应度(R)和3.36×1010 cmHz1/2W-1的探测率(D*)。因此,该器件在宽带光电检测领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Broadband photovoltaic detector based on SnTe/Si heterostructure
SnTe is a new two-dimensional (2D) material, which has many merits, such as the bandgap of SnTe film can be adjusted by changing the film thickness hence its photoelectric properties can be regulated. SnTe belongs to topological crystal insulator (TCI) and has gapless topological surface states as well as exhibiting high carrier mobility at room temperature. SnTe has a narrow band gap and has potential for wavelength extension in the development of novel infrared photodetectors. Si is a traditional semiconductor material and has been widely used in the preparation of various semiconductor devices due to its numerous merits, such as low-cost and well-established preparation methodology. However, the detection wavelength of Si photoelectric detector is limited by its relatively large bandgap (1.12 eV). Recently, some progress has been made in fabricating photovoltaic detectors consisting of new 2D materials and Si. In this study, an efficient and low-cost magnetron sputtering method was used to prepare SnTe nanofilm on Si substrate. A photovoltaic detector based on the vertical heterostructure of SnTe/Si was fabricated using Al as electrode material. J-V characterization of the SnTe/Si heterostructure showed that the device exhibited good diode and photovoltaic characteristics under the illumination of various LED light sources with wavelength between 400 and 1450 nm, and its photocurrent was larger than the dark current. Moreover, under 850 nm illumination, the SnTe/Si device has a high responsivity (R) of 260 mA/W and detectivity (D*) of 3.36×1010 cmHz1/2W-1. Therefore, the device demonstrated potential application in the field of broadband photoelectric detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信