VCSEL非线性数字预失真的端到端深度学习

L. Minelli, F. Forghieri, R. Gaudino
{"title":"VCSEL非线性数字预失真的端到端深度学习","authors":"L. Minelli, F. Forghieri, R. Gaudino","doi":"10.1109/ICOP56156.2022.9911760","DOIUrl":null,"url":null,"abstract":"We propose a novel optimization method for a Neural Network based Digital Pre-Distorter (DPD), applied in Intensity Modulation-Direct Detection transmission systems leveraging Multi-Modal Fiber and Vertical-Cavity Surface-Emitting Laser. We train the DPD using End-to-end Deep Learning of the optical link, together with a Direct Learning Approach leveraging experimental measurements for modeling the transmission channel. The optimization considers VCSEL amplitude constraints, the use of an FFE at the receiver side, and the presence of a receiver non-flat Colored Gaussian Noise (CGN). We verify our optimized DPD on an experimental setup transmitting a 92 Gbps PAM-4 modulated signal. We achieve, for BER=0.01, a performance gain of more than 1 dB in terms of Optical Path Loss with respect to the best performing non-pre-distorted scenario.","PeriodicalId":227957,"journal":{"name":"2022 Italian Conference on Optics and Photonics (ICOP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"End-to-end Deep Learning for VCSEL’s Nonlinear Digital Pre-Distortion\",\"authors\":\"L. Minelli, F. Forghieri, R. Gaudino\",\"doi\":\"10.1109/ICOP56156.2022.9911760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel optimization method for a Neural Network based Digital Pre-Distorter (DPD), applied in Intensity Modulation-Direct Detection transmission systems leveraging Multi-Modal Fiber and Vertical-Cavity Surface-Emitting Laser. We train the DPD using End-to-end Deep Learning of the optical link, together with a Direct Learning Approach leveraging experimental measurements for modeling the transmission channel. The optimization considers VCSEL amplitude constraints, the use of an FFE at the receiver side, and the presence of a receiver non-flat Colored Gaussian Noise (CGN). We verify our optimized DPD on an experimental setup transmitting a 92 Gbps PAM-4 modulated signal. We achieve, for BER=0.01, a performance gain of more than 1 dB in terms of Optical Path Loss with respect to the best performing non-pre-distorted scenario.\",\"PeriodicalId\":227957,\"journal\":{\"name\":\"2022 Italian Conference on Optics and Photonics (ICOP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Italian Conference on Optics and Photonics (ICOP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOP56156.2022.9911760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Italian Conference on Optics and Photonics (ICOP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOP56156.2022.9911760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的基于神经网络的数字预失真器(DPD)优化方法,应用于利用多模态光纤和垂直腔面发射激光器的强度调制-直接检测传输系统。我们使用光链路的端到端深度学习以及利用实验测量对传输信道建模的直接学习方法来训练DPD。优化考虑了VCSEL振幅约束、接收机侧FFE的使用以及接收机非平坦彩色高斯噪声(CGN)的存在。我们在传输92 Gbps PAM-4调制信号的实验装置上验证了优化后的DPD。在BER=0.01的情况下,相对于性能最佳的非预失真场景,我们实现了超过1 dB的光路损耗性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End-to-end Deep Learning for VCSEL’s Nonlinear Digital Pre-Distortion
We propose a novel optimization method for a Neural Network based Digital Pre-Distorter (DPD), applied in Intensity Modulation-Direct Detection transmission systems leveraging Multi-Modal Fiber and Vertical-Cavity Surface-Emitting Laser. We train the DPD using End-to-end Deep Learning of the optical link, together with a Direct Learning Approach leveraging experimental measurements for modeling the transmission channel. The optimization considers VCSEL amplitude constraints, the use of an FFE at the receiver side, and the presence of a receiver non-flat Colored Gaussian Noise (CGN). We verify our optimized DPD on an experimental setup transmitting a 92 Gbps PAM-4 modulated signal. We achieve, for BER=0.01, a performance gain of more than 1 dB in terms of Optical Path Loss with respect to the best performing non-pre-distorted scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信