{"title":"基于支持向量机和资源预留策略的云计算平台资源优化与故障检测算法","authors":"Xilong Qu, S. Patnaik","doi":"10.1504/IJADS.2018.10011764","DOIUrl":null,"url":null,"abstract":"Efficient operation of cloud computing platforms depends on the optimised virtual resources and faster fault diagnosis system of the virtual machines. This paper proposes an algorithm by introducing a virtual machines based on elastic reservation mechanism, which can improve the availability of cloud resources through the demand analysis taking the help of support vector machines which has advantages resolving nonlinear and high dimensional classification problems. Secondly it adopts the anomaly detection algorithm based on support vector machines for failure analysis. In addition, the dimensionality problem can be sorted out by means of principal component analysis (PCA) algorithm and a kernel function used for distance measurement. It establishes the topological structure for the image set of feature space with Delaunay triangulation and analyses the relationship between kernel parameter and regulator, in order to build an effective model.","PeriodicalId":216414,"journal":{"name":"Int. J. Appl. Decis. Sci.","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resource optimisation and fault detection algorithms for cloud computing platforms based on SVM and resource reserve strategy\",\"authors\":\"Xilong Qu, S. Patnaik\",\"doi\":\"10.1504/IJADS.2018.10011764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient operation of cloud computing platforms depends on the optimised virtual resources and faster fault diagnosis system of the virtual machines. This paper proposes an algorithm by introducing a virtual machines based on elastic reservation mechanism, which can improve the availability of cloud resources through the demand analysis taking the help of support vector machines which has advantages resolving nonlinear and high dimensional classification problems. Secondly it adopts the anomaly detection algorithm based on support vector machines for failure analysis. In addition, the dimensionality problem can be sorted out by means of principal component analysis (PCA) algorithm and a kernel function used for distance measurement. It establishes the topological structure for the image set of feature space with Delaunay triangulation and analyses the relationship between kernel parameter and regulator, in order to build an effective model.\",\"PeriodicalId\":216414,\"journal\":{\"name\":\"Int. J. Appl. Decis. Sci.\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Appl. Decis. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJADS.2018.10011764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Appl. Decis. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJADS.2018.10011764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resource optimisation and fault detection algorithms for cloud computing platforms based on SVM and resource reserve strategy
Efficient operation of cloud computing platforms depends on the optimised virtual resources and faster fault diagnosis system of the virtual machines. This paper proposes an algorithm by introducing a virtual machines based on elastic reservation mechanism, which can improve the availability of cloud resources through the demand analysis taking the help of support vector machines which has advantages resolving nonlinear and high dimensional classification problems. Secondly it adopts the anomaly detection algorithm based on support vector machines for failure analysis. In addition, the dimensionality problem can be sorted out by means of principal component analysis (PCA) algorithm and a kernel function used for distance measurement. It establishes the topological structure for the image set of feature space with Delaunay triangulation and analyses the relationship between kernel parameter and regulator, in order to build an effective model.