工作记忆任务的功能连通性试验分析

S. D'amico, Giovanna Stella, S. Gagliano, M. Bucolo, R. Roche
{"title":"工作记忆任务的功能连通性试验分析","authors":"S. D'amico, Giovanna Stella, S. Gagliano, M. Bucolo, R. Roche","doi":"10.1109/ICHMS49158.2020.9209457","DOIUrl":null,"url":null,"abstract":"To identify neuroanatomical abnormalities in the brains of people with psychosis, schizophrenia or children experiencing PLEs have been detected atypical activity levels in specific brain regions using fMRI or event-related potentials analysis. Both of these approaches suffer from drawbacks. In this study using EEG signals, the method implemented surpasses the limitations of both. The proposed method combines advanced signal processing, in time and frequency domain, with graph analysis and evaluates the inference across subjects. The first part of the procedure consists of a data preparation phase and of a data analysis phase, based on functional connectivity evaluation using the peak correlation methods. The second part takes into account parametric and topological aspects of the brain network, extracted by the brain connectivity and the graph analysis, obtaining robust and clinically relevant information.","PeriodicalId":132917,"journal":{"name":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Connectivity Analysis by Trial in a Working Memory Task\",\"authors\":\"S. D'amico, Giovanna Stella, S. Gagliano, M. Bucolo, R. Roche\",\"doi\":\"10.1109/ICHMS49158.2020.9209457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To identify neuroanatomical abnormalities in the brains of people with psychosis, schizophrenia or children experiencing PLEs have been detected atypical activity levels in specific brain regions using fMRI or event-related potentials analysis. Both of these approaches suffer from drawbacks. In this study using EEG signals, the method implemented surpasses the limitations of both. The proposed method combines advanced signal processing, in time and frequency domain, with graph analysis and evaluates the inference across subjects. The first part of the procedure consists of a data preparation phase and of a data analysis phase, based on functional connectivity evaluation using the peak correlation methods. The second part takes into account parametric and topological aspects of the brain network, extracted by the brain connectivity and the graph analysis, obtaining robust and clinically relevant information.\",\"PeriodicalId\":132917,\"journal\":{\"name\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHMS49158.2020.9209457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHMS49158.2020.9209457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了确定精神病患者、精神分裂症患者或经历ple的儿童大脑中的神经解剖学异常,已经使用功能磁共振成像或事件相关电位分析检测到特定大脑区域的非典型活动水平。这两种方法都有缺点。在使用脑电图信号的研究中,所实现的方法超越了两者的局限性。该方法将时域和频域的高级信号处理与图分析相结合,并对跨学科的推理进行评估。该过程的第一部分包括数据准备阶段和数据分析阶段,基于使用峰值相关方法的功能连通性评估。第二部分考虑脑网络的参数和拓扑方面,通过脑连接和图分析提取,获得鲁棒性和临床相关的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional Connectivity Analysis by Trial in a Working Memory Task
To identify neuroanatomical abnormalities in the brains of people with psychosis, schizophrenia or children experiencing PLEs have been detected atypical activity levels in specific brain regions using fMRI or event-related potentials analysis. Both of these approaches suffer from drawbacks. In this study using EEG signals, the method implemented surpasses the limitations of both. The proposed method combines advanced signal processing, in time and frequency domain, with graph analysis and evaluates the inference across subjects. The first part of the procedure consists of a data preparation phase and of a data analysis phase, based on functional connectivity evaluation using the peak correlation methods. The second part takes into account parametric and topological aspects of the brain network, extracted by the brain connectivity and the graph analysis, obtaining robust and clinically relevant information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信