{"title":"用遗传算法发现可理解的分类规则","authors":"M. Fidelis, H. S. Lopes, A. Freitas","doi":"10.1109/CEC.2000.870381","DOIUrl":null,"url":null,"abstract":"Presents a classification algorithm based on genetic algorithms (GAs) that discovers comprehensible IF-THEN rules, in the spirit of data mining. The proposed GA has a flexible chromosome encoding, where each chromosome corresponds to a classification rule. Although the number of genes (the genotype) is fixed, the number of rule conditions (the phenotype) is variable. The GA also has specific mutation operators for this chromosome encoding. The algorithm was evaluated on two public-domain real-world data sets (in the medical domains of dermatology and breast cancer).","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"207","resultStr":"{\"title\":\"Discovering comprehensible classification rules with a genetic algorithm\",\"authors\":\"M. Fidelis, H. S. Lopes, A. Freitas\",\"doi\":\"10.1109/CEC.2000.870381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents a classification algorithm based on genetic algorithms (GAs) that discovers comprehensible IF-THEN rules, in the spirit of data mining. The proposed GA has a flexible chromosome encoding, where each chromosome corresponds to a classification rule. Although the number of genes (the genotype) is fixed, the number of rule conditions (the phenotype) is variable. The GA also has specific mutation operators for this chromosome encoding. The algorithm was evaluated on two public-domain real-world data sets (in the medical domains of dermatology and breast cancer).\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"207\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discovering comprehensible classification rules with a genetic algorithm
Presents a classification algorithm based on genetic algorithms (GAs) that discovers comprehensible IF-THEN rules, in the spirit of data mining. The proposed GA has a flexible chromosome encoding, where each chromosome corresponds to a classification rule. Although the number of genes (the genotype) is fixed, the number of rule conditions (the phenotype) is variable. The GA also has specific mutation operators for this chromosome encoding. The algorithm was evaluated on two public-domain real-world data sets (in the medical domains of dermatology and breast cancer).