{"title":"压降振荡下蒸汽-水两相流螺旋管内的瞬态对流换热","authors":"Lie-Jin Guo, Ziyuan Feng","doi":"10.1115/imece2000-1512","DOIUrl":null,"url":null,"abstract":"\n In the present paper the experiments for subcooled water flow and steam-water two-phase flow were conducted to investigate the effects of pulsation upon transient heat transfer characteristics in a closed-circulation helical-coiled tube steam generator. The non-uniform property of local heat transfer with steady flow was also examined. The secondary flow mechanism and the effect of interaction between the flow oscillation and secondary flow were analyzed on the basis of the experimental data. Some new phenomena were observed and explained. A series of correlations were proposed for the average and local heat transfer coefficients both under steady and oscillatory flow conditions. The results showed that there were considerable variations in local and peripherally time-averaged Nusselt numbers for pulsating flow in a wide range of parameters. Systematic investigations of pressure drop type oscillations and their thresholds for steam-water two-phase flow in a uniformly heated helical tube were also reported.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient Convective Heat Transfer in a Helical Tube With Steam-Water Two-Phase Flow Under Pressure Drop Type Oscillations\",\"authors\":\"Lie-Jin Guo, Ziyuan Feng\",\"doi\":\"10.1115/imece2000-1512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the present paper the experiments for subcooled water flow and steam-water two-phase flow were conducted to investigate the effects of pulsation upon transient heat transfer characteristics in a closed-circulation helical-coiled tube steam generator. The non-uniform property of local heat transfer with steady flow was also examined. The secondary flow mechanism and the effect of interaction between the flow oscillation and secondary flow were analyzed on the basis of the experimental data. Some new phenomena were observed and explained. A series of correlations were proposed for the average and local heat transfer coefficients both under steady and oscillatory flow conditions. The results showed that there were considerable variations in local and peripherally time-averaged Nusselt numbers for pulsating flow in a wide range of parameters. Systematic investigations of pressure drop type oscillations and their thresholds for steam-water two-phase flow in a uniformly heated helical tube were also reported.\",\"PeriodicalId\":120929,\"journal\":{\"name\":\"Heat Transfer: Volume 4\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 4\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transient Convective Heat Transfer in a Helical Tube With Steam-Water Two-Phase Flow Under Pressure Drop Type Oscillations
In the present paper the experiments for subcooled water flow and steam-water two-phase flow were conducted to investigate the effects of pulsation upon transient heat transfer characteristics in a closed-circulation helical-coiled tube steam generator. The non-uniform property of local heat transfer with steady flow was also examined. The secondary flow mechanism and the effect of interaction between the flow oscillation and secondary flow were analyzed on the basis of the experimental data. Some new phenomena were observed and explained. A series of correlations were proposed for the average and local heat transfer coefficients both under steady and oscillatory flow conditions. The results showed that there were considerable variations in local and peripherally time-averaged Nusselt numbers for pulsating flow in a wide range of parameters. Systematic investigations of pressure drop type oscillations and their thresholds for steam-water two-phase flow in a uniformly heated helical tube were also reported.