利用聚类技术预测客户满意度的数据挖掘

Kartika Purwandari, J. W. C. Sigalingging, Muhammad Fhadli, Shinta Nur Arizky, B. Pardamean
{"title":"利用聚类技术预测客户满意度的数据挖掘","authors":"Kartika Purwandari, J. W. C. Sigalingging, Muhammad Fhadli, Shinta Nur Arizky, B. Pardamean","doi":"10.1109/ICIMTech50083.2020.9211272","DOIUrl":null,"url":null,"abstract":"Managing customer satisfaction has become an important business trend, including restaurants business. This study aims to determine the application of the K-means, Spectral Clustering (SC), and Agglomerative Clustering (AC) method for measuring customer satisfaction on a family restaurant in Taiwan. We contribute the data collection process and application of data mining in a family restaurant. The clustering analysis based on agglomerative clustering approach performs as well as the K-means approach to cluster the same characteristics of the customers. At last, this study shows the measurement result of customer satisfaction and provides improvement suggestion to the restaurant concerned.","PeriodicalId":407765,"journal":{"name":"2020 International Conference on Information Management and Technology (ICIMTech)","volume":"92 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Data Mining for Predicting Customer Satisfaction Using Clustering Techniques\",\"authors\":\"Kartika Purwandari, J. W. C. Sigalingging, Muhammad Fhadli, Shinta Nur Arizky, B. Pardamean\",\"doi\":\"10.1109/ICIMTech50083.2020.9211272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Managing customer satisfaction has become an important business trend, including restaurants business. This study aims to determine the application of the K-means, Spectral Clustering (SC), and Agglomerative Clustering (AC) method for measuring customer satisfaction on a family restaurant in Taiwan. We contribute the data collection process and application of data mining in a family restaurant. The clustering analysis based on agglomerative clustering approach performs as well as the K-means approach to cluster the same characteristics of the customers. At last, this study shows the measurement result of customer satisfaction and provides improvement suggestion to the restaurant concerned.\",\"PeriodicalId\":407765,\"journal\":{\"name\":\"2020 International Conference on Information Management and Technology (ICIMTech)\",\"volume\":\"92 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Information Management and Technology (ICIMTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMTech50083.2020.9211272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Information Management and Technology (ICIMTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMTech50083.2020.9211272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

管理顾客满意度已经成为一个重要的商业趋势,包括餐饮业。本研究旨在探讨k -均值、谱聚类(SC)与聚类(AC)方法在台湾家庭餐厅顾客满意度测评中的应用。本文介绍了一个家庭餐厅的数据采集过程和数据挖掘的应用。基于聚类方法的聚类分析与K-means方法在聚类客户的相同特征方面表现良好。最后,本研究展示了顾客满意度的测量结果,并为相关餐厅提供改进建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Mining for Predicting Customer Satisfaction Using Clustering Techniques
Managing customer satisfaction has become an important business trend, including restaurants business. This study aims to determine the application of the K-means, Spectral Clustering (SC), and Agglomerative Clustering (AC) method for measuring customer satisfaction on a family restaurant in Taiwan. We contribute the data collection process and application of data mining in a family restaurant. The clustering analysis based on agglomerative clustering approach performs as well as the K-means approach to cluster the same characteristics of the customers. At last, this study shows the measurement result of customer satisfaction and provides improvement suggestion to the restaurant concerned.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信